期刊文献+

KL距离的变长马尔可夫模型识别人类剪接位点

The Human Splice Sites Prediction Using Variable Length Markov Model with KL Divergence
原文传递
导出
摘要 针对传统基因剪接位点识别方法具有所用到的序列长,且参数多的问题,论文提出了一种基于KL距离的变长马尔可夫模型(Kullback Leibler divergence-variable length Markovmodel,KL-VLMM)。该模型在变长马尔可夫模型的基础上进行改进,由KL距离代替原来的概率比值来判断序列扩展的方向,有效地提高了特征序列的识别能力,且模型阶数由二阶降为一阶,降低了算法的空间复杂度。利用人类剪接位点数据库N269,对该模型和其他传统方法的识别性能进行了比较。实验结果表明,采用KL-VLMM方法预测人类基因剪接位点的预测效果更好。 In this paper,a variable length Markov model based on Kullback Leibler divergence(Kullback Leibler divergence-variable length Markov model,KL-VLMM) for human splice sites prediction was proposed to avoid the problem of long sequence and more parameters in traditional methods.In this method,the direction of the extended sequence could be chosen as the detecting features for each candidate splice site,according to the KL divergence,instead of the ratio of likelihood at each position.Furthermore,the order of the model was decreased from second to first.As a result,the capability of prediction of the model was effectively improved,and the space complexity of the prediction algorithm of the model was reduced as well.To test performance of the KL-VLMM method,two experiments were carried with it,and at the same time with some traditional methods,such as VLMM and support vector machine(SVM),using the human splice sites database-N269.The experimental results included prediction accuracy and receiver operating characteristic(ROC) curves.In comparison with the other two methods,the prediction accuracy of the KL-VLMM method was the highest,and the ROC curve of it was above others.These results show effectiveness of the KL-VLMM method.
作者 李绍燕 邓伟
出处 《生物物理学报》 CAS CSCD 北大核心 2011年第8期719-726,共8页 Acta Biophysica Sinica
关键词 变长马尔可夫模型 剪接位点识别 KL距离 Variable length Markov model Splice site recognition KL divergence
  • 相关文献

参考文献6

二级参考文献106

  • 1蔡煜东,陈常庆.用神经网络方法识别真核基因内含子并确定基因的编码序列[J].生物化学与生物物理学报,1993,25(2):135-141. 被引量:3
  • 2郑毅,丁达夫.果蝇内含子3'剪接位点的选择机制[J].生物物理学报,1994,10(3):459-464. 被引量:6
  • 3刘爽,贾传荧,陈鹏.一种自动选择参数的加权支持向量机算法[J].计算机工程与应用,2006,42(2):64-66. 被引量:9
  • 4Leibe B,Schiele B.Anailing appearance and contour based methods for object categorization.In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Madison,USA:IEEE,2003.409-415
  • 5Shotton J,Blake A,Cipolla R.Contour-based learning for object detection.In:Proceedings of the 10th IEEE International Conference on Computer Vision.Beijing,China:IEEE,2005.503-510
  • 6Opelt A,Pinz A,Zisserman A.A boundary-fragment-model for object detection.In:Proceedings of the 9th European Conference on Computer Vision.Graz,Austria:Springer,2006.575-588
  • 7Friedman J,Hastie T,Tib8hirani R.Additive logistic regression:a statistical view of boosting.Annals of Statistics,2000,28(2):337-407
  • 8Freund Y.Schapire R E.Experiments with a new boosting algorithm.In:Proceedings of the 13th International Conference on Machine Learning.San Francisco,USA:KFUPM ePrints.1996.148-156
  • 9Breiman L.Prediction games and arcing Mgorithma.Neural Computation,1999,11(7):1493-1517
  • 10Schapire R E.Singer Y.Improved boosting algorithms using confidence-rated predictions.Machine Learning,1999,37(3):297-336

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部