期刊文献+

Convection in the Rayleigh-Bénard Flow with all Fluid Properties Variable 被引量:1

Convection in the Rayleigh-Bénard Flow with all Fluid Properties Variable
原文传递
导出
摘要 In the present paper,the effect of variable fluid properties(density,viscosity,thermal conductivity and specific heat) on the convection in the classical Rayleigh-Bénard problem is investigated.The investigation concerns water,air,and engine oil by taking into account the variation of fluid properties with temperature.The results are obtained by numerically solving the governing equations,using the SIMPLE algorithm and covering large temperature differences.It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable.However,when the fluid properties are kept constant,calculated at the mean temperature,and only density is considered variable,the critical Rayleigh number either decreases or remains constant. In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Benard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第5期454-459,共6页 热科学学报(英文版)
关键词 流体性质 瑞利数 对流 SIMPLE算法 温度差异 平均气温 系数和 解方程 Rayleigh-Benard, variable properties, onset, numerical investigation.
  • 相关文献

参考文献26

  • 1Benard, H. (1900). Les tourbillons cellulaires dans une nappe liquide, Revue Generale des Sciences Pures et Appliqu6es, 11, pp. 1261-1271, 1309-1328.
  • 2Rayleigh, L. (1916). On convection currents in a horizontal layer of fluid, when the higher temperature is on underside, Philosophical Magazine, 32, pp.529-546.
  • 3Paolucci, S. and Chenoweth, D.R. (1987). Departures from the Boussinesq approximation in the laminar Benard convection, Physics of Fluids, 30(5), pp. 1561- 1564.
  • 4Bejan A., 1995, Convection Heat Transfer, 2^nd ed., John Wiley & Sons, New York.
  • 5Krishnamurti, R. (1973). Some further studies on the transition to turbulent convection, Journal of Fluid Mechanics, 60, pp.285-303.
  • 6Oberbeck, A. (1879). Uber die Warmeleitung der Flfissigkeiten bei Beriicksichtigung der Strt~mungen infolge von Temperaturdifferenzen, Ann. Phys. Chem.,7, pp.271-292.
  • 7Boussinesq, J. (1903). Theorie Analytique de la Chaleur, Vol.2. Gauthier-Villars, Paris.
  • 8Tippelskirch, H. (1956). Uber Konvektions-zellen, insbesondere in flfissigem Schwefel, Beitr. Phys. Atmos., 29, pp. 37-54.
  • 9Silverstron, EL. (1958). Warmedurchgang in waagerechten Flussigkeitsschichten, Forsch. Ing. Wes., 24, pp.29-32, 59-69.
  • 10Palm, E. (1960). On the tendency towards hexagonal cells in steady convection, Journal of Fluid Mechanics, 8, pp. 183-192.

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部