期刊文献+

吉林长白山森林冠顶高度激光雷达与MERSI联合反演 被引量:6

Estimation of Forest Canopy Height by Integrating GLAS and FY3A-MERSI Data in Changbai Mountain
原文传递
导出
摘要 将激光雷达与光学遥感相结合进行区域林分冠顶高度联合反演,提出了大脚印激光雷达GLAS脚点波形数据处理和不同地形条件下的森林冠顶高度反演算法,并建立了区域尺度不同森林类型林分冠顶高度GLAS+MERSI联合反演模型,制作了长白山地区森林冠顶高度图。 Space-borne LiDAR has the direct measurement capability with high precision on the vertical structure of forest,and optical remote sensing is an effective way to obtain bio-physiological parameters of regional scale forest.So,the highest regional inversion of forest canopy height by integrating the high precision sample data of LiDAR and other grid remote sensing data will greatly enhance the measurement accuracy of forestry.The processing of waveform data of large footprint LiDAR GLAS and algorithm for forest canopy height in different terrain condition have been implemented.The GLAS + MERSI joint inversion model for forest canopy height of a regional scale in different forest types have been established.And the map of canopy height of Changbai Mountain forest has been produced.Overall,the results of canopy height estimated by GLAS has very high accuracy and the GLAS + MERSI joint inversion model of needle-leaf forest has highest accuracy,that of broadleaf forest has higher accuracy.By analysis,we can find that the GLAS + MERSI joint inversion model,which considering of optical remote sensing of biophysical parameters have higher accuracy,and the results are consistent with land cover data in the spatial distribution.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2011年第9期1020-1024,共5页 Geomatics and Information Science of Wuhan University
基金 国家973计划资助项目(2010CB950701-1) 中国气象局气候变化行业专项资助项目(CCSF-09-09) 中国气象局资助项目(2012206)
关键词 森林冠顶高度 星载激光雷达 GLAS FY3A-MERSI 长白山 max forest canopy height LiDAR GLAS FY3A-MERSI Changbai Mountain
  • 相关文献

参考文献9

二级参考文献50

  • 1庞勇,孙国清,李增元.林木空间格局对大光斑激光雷达波形的影响模拟[J].遥感学报,2006,10(1):97-103. 被引量:24
  • 2Kilian J, Haala N, Englich M. Capture and Evaluation of Airborne Laser Scanner Data[C]. International Archives of Photogrammetry and Remote Sensing, Vienna, Austria, 1996.
  • 3Kraus K, Pfeifer N. Determination of Terrain Mod- els in Wooded Area with Airborne Laser Scanner Data[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 1998,53 : 193-203.
  • 4Axelsson P. Processing of Laser Scanner Data Algorithms and Applications [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54: 138-147.
  • 5Vosselman G. Slope Based Filtering of Laser Altimetry Data[C]. IAPRS, Amsterdam, The Netherlands, 2000.
  • 6Wack R, Wimmer A. Digital Terrain Models from Airborne Laser Scanner Data A Grid Based Approach[C]. IAPRS, ISPRS CommissionⅢ, Symposium. Graz, Austria, 2002.
  • 7Arefi H, Hahn M. A Morphological Reconstruction Algorithm for Separation Off-terrain Points from Terrain Points in Laser Scanning Data[C]. ISPRS WG Ⅲ/3, Ⅲ/4, V/3 Workshop, Laser scanning 2005, Enschede, the Netherlands, 2005.
  • 8Kobler A, Ogrinc P. REIN Algorithm and the Influence of Point Cloud Density on NDSM and DEM Precision in a Submediterranean Forest[C]. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 2007.
  • 9Sithole G, Vosselman G. Comparison of Filtering Algorithms[C]. ISPRS Commission Ⅲ, Working Group 3, Dresden, Germany, 2003.
  • 10Baltsavias E P. A Comparison Between Photogrammetry and Laser Scanning [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54 (1):83-94.

共引文献209

同被引文献74

引证文献6

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部