摘要
将激光雷达与光学遥感相结合进行区域林分冠顶高度联合反演,提出了大脚印激光雷达GLAS脚点波形数据处理和不同地形条件下的森林冠顶高度反演算法,并建立了区域尺度不同森林类型林分冠顶高度GLAS+MERSI联合反演模型,制作了长白山地区森林冠顶高度图。
Space-borne LiDAR has the direct measurement capability with high precision on the vertical structure of forest,and optical remote sensing is an effective way to obtain bio-physiological parameters of regional scale forest.So,the highest regional inversion of forest canopy height by integrating the high precision sample data of LiDAR and other grid remote sensing data will greatly enhance the measurement accuracy of forestry.The processing of waveform data of large footprint LiDAR GLAS and algorithm for forest canopy height in different terrain condition have been implemented.The GLAS + MERSI joint inversion model for forest canopy height of a regional scale in different forest types have been established.And the map of canopy height of Changbai Mountain forest has been produced.Overall,the results of canopy height estimated by GLAS has very high accuracy and the GLAS + MERSI joint inversion model of needle-leaf forest has highest accuracy,that of broadleaf forest has higher accuracy.By analysis,we can find that the GLAS + MERSI joint inversion model,which considering of optical remote sensing of biophysical parameters have higher accuracy,and the results are consistent with land cover data in the spatial distribution.
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2011年第9期1020-1024,共5页
Geomatics and Information Science of Wuhan University
基金
国家973计划资助项目(2010CB950701-1)
中国气象局气候变化行业专项资助项目(CCSF-09-09)
中国气象局资助项目(2012206)