摘要
为了抑制球面阵列峰值旁瓣电平,提出了一种基于改进遗传算法的阵元球面稀布优化算法(ESSA).首先采用遗传算法染色体对阵元位置信息进行特征提取,并利用染色体的的交叉、变异对位置信息进行优化重组,然后将重组前后的阵元位置信息合并成新的种群,最后在迭代过程中根据遗传算法适应度函数对阵元分布进行优化选择,从而建立最优阵元分布模型.与阵元球面均匀分布方法相比,EESA具有更大的阵元分布空间.仿真实验表明,经过遗传算法优化后所得最优阵元分布模型的峰值旁瓣电平较优化前约降低2.6dB,实验结果证明了ESSA可完全实现阵元可分布空间的随机寻优.
An element spherical sparse algorithm (ESSA) based on a modified genetic algorithm (GA) is proposed to reduce the maximum relative side lobe level of spherical arrays. Features of the elements positions are extracted by using the chromosomes of GA, and the information of elements positions is restructured by means of crossover and mutation, then a new group is generated by merging new information of elements positions. Finally, the best elements positions distribution is generated from the fitness in iteration process, and the optimization model is obtained. ESSA has more degrees of freedom compared with the uniform elements distribution. Simulation results show that the proposed method reduces the maximum relative side lobe level by about 2.6 dB. It is shown that ESSA absolutely realizes randomly seeking in the solution space.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2011年第4期77-81,共5页
Journal of Xi'an Jiaotong University
基金
国家自然科学基金资助项目(60702070)
关键词
球面阵列
遗传算法
球面稀布优化算法
旁瓣电平
spherical arrays
genetic algorithm~ element spherical sparse algorithm
side lobe level