期刊文献+

载细胞水凝胶体系中微通道结构对营养物输送能力的影响

Influence of Microfluidic Channels on Delivery of Nutrient in Cell-Laden Hydrogels
下载PDF
导出
摘要 为了优化载细胞水凝胶中微通道的结构设计,通过数值模拟,系统地研究了孔隙率、微通道数目及排布方式等参数对营养物输送能力的影响.研究结果表明:在给定微通道数目下,微通道尺寸和间距均存在最优值,与此相对应的营养物输送能力最佳;当孔隙率或微通道数目较大时,微通道排布方式对营养物的输送能力无明显影响.通过参数优化,可以更好地提高微通道的营养物输送能力,尤其是保证远离微通道表面的细胞得到充足的营养物供应,为组织工程化组织中微通道结构的优化设计提供指导. To optimize the structural parameters of microfluidic cell-laden hydrogels embedded with microchannels, a mathematical model is developed to systematically investigate the influence of microchannel size, inter-channel separation, number of channels and their distribution on nutrient transport in cell-laden hydrogels. The simulation results show that there exist the optimal microchannel size and inter-channel separation for enhanced nutrient utilization. While the porosity is fixed, the capability of nutrient transport is improved with the increasing channel number. The distribution of channels exerts slight effect on the nutrient delivery as the number of channels gets beyond 6. In addition, the nutrient transport can be enhanced by adjusting the diffusion properties of hydrogels. The present results provide useful guidance for the experimental design of microfluidic tissue constructs.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第4期115-120,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(10825210 10872157) 国家'111引智计划'资助项目(B06024) 陕西省自然科学基金资助项目(2010JQ1010) 西安交通大学校基金资助项目(08143004)
关键词 载细胞水凝胶 微通道 营养物输送 消耗速率 cell-laden hydrogel microfluidic channel nutrient delivery consumption rate
  • 相关文献

参考文献22

  • 1WOLFE R A,ROYS E C,MERION R M.Trends in organ donation and transplantation in the united states,1999-2008[J].Am J Transplant,2010,10(4p2):961-972.
  • 2LANGER R,VACANTI J P.Tissue engineering[J].Science,1993,260(5110):920-926.
  • 3KIRSNER R S,FALANGA V,EAGLSTEIN W H.The development of bioengineered skin[J].Trends Biotechnol,1998,16(6):246-249.
  • 4SHIN'OKA T,IMAI Y,IKADA Y.Transplantation of a tissue-engineered pulmonary artery[J].N Engl J Med,2001,344(7):532-533.
  • 5PAPENBURG B J,LIU J,HIGUERA G A,et al.Development and analysis of multi-layer scaffolds for tissue engineering[J].Biomaterials,2009,30 (31):6228-6239.
  • 6WU W,HANSEN C,ARAGON A,et al.Directwrite assembly of biomimetic microvascular networks for efficient fluid transport[J].Soft Matter,2010,6(4):739-742.
  • 7LING Y,RUBIN J,DENG Y,et aL A cell-laden microfluidic hydrogel[J].Lab Chip,2007,7(6):756-762.
  • 8LEE W,LEE V,Polio S,et al.On-demand threedimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels[J].Biotechnol Bioeng,2010,105(6):1178-1186.
  • 9SONG Y S,LIN R L,MONTESANO G,et al.Engineered 3D tissue models for cell-laden microfluidic channels[J].Anal Bioanal Chem,2009,395(1):185-193.
  • 10BIAN L,ANGIONE S L,NG K W,et al.Influence of decreasing nutrient path length on the development of engineered cartilage[J].Osteoarthritis Cartilage,2009,17(5):677-685.

二级参考文献127

  • 1Brady J. AIChE Ann Meet, 1994, 320.
  • 2Johnson E M, Berk D A, Jain R K, Deen W M. Biophys J, 1996, 70:1017.
  • 3(a)Clague D S, Phillips R T. Phys Fluids, 1996, 8(7), 1720; (b)Tsai D S, Strieder W. Chem Eng Commun, 1985, 40:207.
  • 4Knorgen M, Andt K F, Richter S, Kuckling D. Schneider H. J Molecular Structure, 2000, 554:69.
  • 5Ghi G Y, Hill D J T, Maillet D, et al. Polymer, 1997, 38:3985.
  • 6Morris K F, CutakB J, DixonA M, etal. Anal Chem, 1999, 71:5315.
  • 7Saito Y, Kataoka H, Stephan A M. Macromolecules, 2001, 34:6955.
  • 8Zhao C, Kuroki S, Ando I. Macromolecules, 2000, 33:4486.
  • 9Rondean-Mouro C, Zykwinska A, Durand S, et al. Carbohydrate Polymer, 2004, 57:459.
  • 10Baille W E, Malveau C, Zhu X. X, et al. Biomacromolecales, 2002, 3:214.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部