摘要
Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts in the synthesized views. To solve this problem, a 3D video quality model base depth maps (D-3DV) for virtual view synthesis and depth map coding in the FTV applications is proposed. First, the relationships between distortions in coded depth map and rendered view are derived. Then, a precisely 3DV quality model based depth characteristics is develop for the synthesized virtual views. Finally, based on D-3DV model, a multilateral filtering is applied as a pre-processed filter to reduce rendering artifacts. The experimental results evaluated by objective and subjective methods indicate that the proposed D-3DV model can reduce bit-rate of depth coding and achieve better rendering quality.
Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts in the synthesized views. To solve this problem, a 3D video quality model base depth maps (D-3DV) for virtual view synthesis and depth map coding in the FTV applications is proposed. First, the relationships between distortions in coded depth map and rendered view are derived. Then, a precisely 3DV quality model based depth characteristics is develop for the synthesized virtual views. Finally, based on D-3DV model, a multilateral filtering is applied as a pre-processed filter to reduce rendering artifacts. The experimental results evaluated by objective and subjective methods indicate that the proposed D-3DV model can reduce bit-rate of depth coding and achieve better rendering quality.
基金
supported by the National Natural Science Foundation of China(Grant No.60832003)
Key Laboratory of Advanced Display and System Application(Shanghai University),Ministry of Education,China(Grant No.P200902)
the Key Project of Science and Technology Commission of Shanghai Municipality(Grant No.10510500500)