期刊文献+

航空发动机全包线最优PID控制器设计 被引量:2

Neutral Network Based Optimal PID Controller over Whole Envelope for an Aero-engine
下载PDF
导出
摘要 研究了一种基于神经网络的航空发动机全包线PID控制器设计方法。首先在全包线内选定若干典型工况点,并通过遗传算法离线优化PID控制器参数。然后通过BP神经网络训练建立飞行高度和马赫数与PID参数的非线性映射关系,亦即建立起基于神经网络的航空发动机全包线最优PID控制器。最后,将该控制器应用于某型涡扇发动机稳态控制和飞行过程控制仿真,与原控制器比较,控制效果获得有效改善。 An aero-engine optimal PID control scheme was presented,which was suitable for the engine whole envelope with a neural network approximation.Firstly,the optimal PID controller parameters were designed by genetic algorithm(GA) for a certain turbofan engine simplified real-time simulation model around some design-points.Then according to these optimized PID controller parameters,a neural network approximation was trained to imitate the relation between the parameters(Kp,Ki,Kd) of local optimal controllers and the flight conditions(H,Ma),so that a neutral network based optimal PID controller was obtained.Finally,this new controller was applied to a certain turbofan engine control system simulation for the steady control,acceleration control and whole flight envelope control.The simulation results show that the aero-engine control system has excellent characteristics in design points and whole flight envelope.In this approach,the controller has a simple structure,and is easy and practical for real-time realization.
出处 《弹箭与制导学报》 CSCD 北大核心 2011年第4期105-107,共3页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 航空发动机 神经网络 PID控制 飞行包线 turbofan engine neutral network PID control flight envelope
  • 相关文献

参考文献9

二级参考文献21

  • 1张明君,张化光.基于遗传算法优化的神经网络PID控制器[J].吉林大学学报(工学版),2005,35(1):91-96. 被引量:33
  • 2姚华,蒋平国,孙健国.某型发动机数控系统的相似参数自适应控制[J].航空动力学报,2005,20(4):673-678. 被引量:12
  • 3胡泽新,周金荣,黄道.多变量非线性自整定PID控制器[J].控制理论与应用,1996,13(2):268-272. 被引量:14
  • 4阎文博 陶涛.鲁棒控制问题中航空发动机飞行包线区域的划分.第九届航空动力自动控制专业学术论文集[M].,1998,10.86-89.
  • 5阎文博,第九届航空动力自动控制专业学术论文集,1998年,10卷,86页
  • 6施阳,MATLAB语言工具箱.TOOL BOX实用指南[S],1998年
  • 7薛定宇,控制系统计算机辅助设计.MATLAB语言及应用,1996年
  • 8王小平 曹立明.遗传算法[M].西安:西安交通大学出版社,2002..
  • 9Cooper J,Hinde C.Improving genetic algorithms′efficiency using intelligent fitness functions[J].IEA/AIE,2003,2718:636-643.
  • 10Echtle K,Eusgeld I.A genetic algorithm for fault-tolerant system design[C]//LADC.2003,LNCS2847:197-213.

共引文献106

同被引文献23

  • 1李秋红,许光华,孙健国.航空发动机小波神经网络PID控制[J].航空动力学报,2009,24(4):875-879. 被引量:6
  • 2黄护林.太阳能斯特林发动机的性能模拟[J].太阳能学报,2004,25(5):657-662. 被引量:18
  • 3Milhim A B. Modeling and fault tolerant PID control of a quad- rotor UAV [ D ]. Montreal : Concordia University ,2010.
  • 4Huang G B, Ding X, Zhou H. Optimization method based ex- treme learning machine for classification [ J]. Neuroeomputing, 2010,74( 1 ) : 155-163.
  • 5Suresh S, Saraswathi 5, Sundararajan N. Performance enhance- ment of extreme learning machine for muhi-category sparse data classification problems [ J ]. Engineering Applications of Artificial Intelligence, 2010,23 ( 7 ) : 1149-1157.
  • 6Liu N, Wang H. Ensemble based extreme learning machine [ J ]. IEEE Signal Processing Letters ,201017 ( 8 ):754-757.
  • 7Zang H ,Zhang S,Hapeshi K. A review of nature-inspired algo- rithms [ J ]. Journal of Bionic Engineering, 2010,7 ( Supple- ment) :S232-S237.
  • 8Yang X S. Nature-inspired metaheuristic algorithms [ M ]. Beck- ington : Luniver Press, 2010 : 81-89.
  • 9Yang X S. Firefly algorithms for muhimodal optimization [ M ]. Heidelberg, Berlin : Springer, 2009 : 169-178.
  • 10Silva D N G,Pacifico L D S,Ludermir T B. An evolutionary ex- treme learning machine based on group search optimization [C ]//Proceeding of 2011 IEEE Congress on Evolutionary Computation. Paris : IEEE ,2011:574-580.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部