期刊文献+

基于最大信噪比的带噪测控信号分离算法

Separation algorithm for TT&C signals of satellite based on maximum signal noise ratio
下载PDF
导出
摘要 在实际卫星测控信号侦察中,混合副载波信号分离比较困难,且耗时较长。为此,提出一种基于小波变换和最大信噪比的副载波盲分离算法。先利用小波阈值算法对混合带噪信号进行消噪处理,然后采用基于最大信噪比的盲分离算法对消噪后的信号实施分离,最后得到测控副载波信号的估计。MATALAB仿真结果表明,该算法计算复杂度低,耗时短,能够较好地分离测控副载波信号。 It is difficult and time-consuming to separate mixed satellite telemetry, track and control (TT&C) subcarrier signals in actual military satellite TT&C information scout. A blind subcarrier signals separation algorithm based on wavelet transform and maximum signal noise ratioin is presented. Firstly, the noisy mixed subcarrier signals are denoised by wavelet threshold algorithm. Secondly,the mixed subcarrier signals are separated by maximum signal noise ratio algorithm,and the estimated satellite TT&C subcarrier signals are obtained. Simulation results in Matalab show that this algorithm is of low computational complexity, and better performance and efficiency in the mixed satellite TT&C subcarrier signals separation.
出处 《航天电子对抗》 2011年第3期13-16,42,共5页 Aerospace Electronic Warfare
关键词 卫星测控 小波阈值消噪 最大信噪比 盲源分离 satellite TT&C wavelet threshold denoising maximum signal noise ratio blind source separation
  • 相关文献

参考文献6

  • 1王乐,顾学迈.基于负熵最大化的卫星测控信号盲识别算法[J].南京理工大学学报,2008,32(6):777-781. 被引量:5
  • 2Donoho DL, Johnstone IM. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1992,81 : 425 - 455.
  • 3Cheng YM,Liu HI.. A new approach to blind source separation with global optimal pmperty[C]// Proceedings of the IASTED International Conference of Neural Networks and Computational Intelligence. Griedelweld, Switzerland, 2004 : 137 - 141.
  • 4张小兵,马建仓,陈翠华,刘恒.基于最大信噪比的盲源分离算法[J].计算机仿真,2006,23(10):72-75. 被引量:27
  • 5Bora M. Lerning multidimensional signal processing[D]. Linkoping, Sweden.. Unpublished doctoraldissertation Linkoping University, 1998.
  • 6Hyvrinen A, Karhunen J, Oja E. Independent com-ponent analysis: algorithms and applications[J].Neural Networks, 2000, 13(4 - 5) :411 - 430.

二级参考文献9

  • 1申丽岩,方滨,沈毅.基于负熵极大的独立分量分析方法[J].中北大学学报(自然科学版),2005,26(6):396-399. 被引量:14
  • 2A J Bell and T J Sejnowski. An information approach to blind separation and blind deconvolution[J]. Neural Computation,1995,7(6): 1129 - 1159.
  • 3S Amari, A Cichocki, H H Yang. A new learning algorithm for blind signal separation[J]. Advances in Neural Information Processing Systems, Cambridge, MA, 1997 -8. 657 - 663.
  • 4D T Pham, P Garrat and C Jutten. Separation of a mixture of independent sources through a maximum likelihood approach[ CI. Proceedings of EUSIPCO, 1992 -4. 771- 774.
  • 5J V Stone. Blind Source Separation Using Temporal Predictability[ J]. Neural Computation, 2001 - 7. 150 - 165
  • 6Y M Cheung, H L Liu. A new approach to blind source separation with global optimal property[C]. Proceedings of the IASTED International Conference of Neural Networks and Computational Intelligence. Grindelwald, Switzerland 2004. 137 - 141.
  • 7M Borga. Learning multidimensional signal processing. [ M].Unpublished doctoraldissertation Linkoping University,Linkoping, Sweden. 1998.
  • 8T W Lee, et al. Independent component analysis using an extended infomax algorithm for mixed sub - Gaussian and super - Gaussian sources [J]. Neural Computation, 1999,11(2) :409 - 433
  • 9A Hyvarinen, et al. A fast fixed - point algorithm for independent analysis[ J]. Neural Computation, 1997 -9. 1483 - 1492.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部