期刊文献+

采用详细化学反应机理的火焰面模型模拟煤油两相燃烧流场 被引量:6

Flamelet modeling of two-phase kerosene combustion flow fields using a detailed chemical reaction mechanism
原文传递
导出
摘要 基于可实现的k-ε湍流模型、颗粒随机轨道模型、火焰面模型和航空煤油详细化学反应机理对模型燃烧室内两相燃烧流场进行了数值模拟.其中详细反应机理由替代燃油(80%质量分数的正癸烷,20%质量分数的1,2,4-三甲基苯)的反应机理和NOx的反应机理组合而成.通过与实验数据的比较,考察采用该详细化学反应机理的火焰面模型模拟RP-3航空煤油燃烧流场的准确性,特别是污染物排放计算的精度.结果表明:稳态火焰面模型模拟的温度场和CO2生成量与实验数据吻合较好,而预测的NO排放量与实验值偏差较大;非稳态火焰面模型显著提高了NO的预测精度,在工况1(来流马赫数为0.16,进口温度为537 K,油气比为0.004 8,常压)条件下与实验数据吻合较好,但在工况2(来流马赫数为0.155,进口温度为523 K,油气比为0.010,常压)条件下仍过高估计了NO的排放量. Two-phase combustion flow fields in a model combustor were numerically simulated using realizable k-ε turbulent model,particles stochastic trajectory model,flamelet models and the detailed chemical reaction mechanism of aviation kerosene.The detailed reaction mechanism was assembled using the combustion mechanism of surrogate fuel(80% decane and 20% 1,2,4-trimethylbenzene by mass fraction) and NOx formation mechanism.The accuracy of flamelet modeling of RP-3 kerosene combustion flow fields(especially for NO emissions) employing the detailed reaction mechanism was investigated by comparison with the experimental data.The result shows that the temperature and CO2 concentrations predicted using the steady flamelet model are in good agreement with the experimental data,but the NO emissions have a bigger deviation.The use of unsteady flamelet model significantly improves the prediction accuracy of NO concentrations and shows good agreement with the experimental data in condition 1(inlet Mach number 0.16,inlet temperature 537K,fuel-air ratio 0.0048,atmospheric pressure),but NO emissions are overpredicted in condition 2(inlet Mach number 0.155,inlet temperature 523K,fuel-air ratio 0.010,atmospheric pressure).
出处 《航空动力学报》 EI CAS CSCD 北大核心 2011年第7期1471-1479,共9页 Journal of Aerospace Power
关键词 航空煤油 替代燃油 详细化学反应机理 火焰面模型 NO排放 aviation kerosene surrogate fuel detailed chemical reaction mechanism flamelet model NO emissions
  • 相关文献

参考文献19

  • 1Dagaut P. Kinetic of jet fuel combustion over extended conditions: experimental and modeling[J]. Journal of Engineering for Gas Turbine and Power, 2009, 129 (2):394-403.
  • 2Honnet S,Seshadri K,Niemann U,et al. A surrogate fuel for kerosene[J]. Proceedings of the Combustion Institute. 2009,32(1) :485-492.
  • 3Hewson J C,Bollig M. Reduced mechanisms for NOx emission from hydrocarbon diffusion flames[J]. Symposium (International) on Combustion,1996,26(2) :2171-2179.
  • 4Pope S B. PDF methods for turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1985,11 (2) : 119-192.
  • 5Klimenko A Y, Bilger R W. Conditional moment closure for turbulent combuslion[J]. Progress in Encrgy and Corn bustion Science,1999,25(6) :595-687.
  • 6Peters N. I.aminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1984,10(3):319-359.
  • 7Peters N. Turbulent combustion[M]. London: Cambridgc University Press, 2000.
  • 8Claramunt K,Consul R,Carbonell D,et al. Analysis of the laminar flamelet concept for nonpremixed laminar flames [J]. Combustion and Flame,2006,145(4) :845-862.
  • 9董刚,王海峰,陈义良.用火焰面模型模拟甲烷/空气湍流射流扩散火焰[J].力学学报,2005,37(1):73-79. 被引量:10
  • 10Barths H,Peters N,Brehm N,et al. Simulation of poilu tant formation in a gas turbine combustor using unsteady flamelets[J]. Symposium (International) on Combustion, 1998,27(2):1841-1847.

二级参考文献12

  • 1Peters N. Laminar flamelet concepts in turbulent combustion. In: 21st Symp (Int) on Combustion. The Combustion Institute, 1986. 1231~1250.
  • 2Bray KN, Peters N. Laminar flamelets in turbulent flames.In: Libby PA, Williams FA, eds. Turbulent Reacting Flows. New York: Academic Press, 1994. 63~114.
  • 3Pitsch H, Barths H, Peters N. Three-dimensional modeling of NOx and soot formation in DI-diesel engines using detailed chemistry based on the interactive flamelet approach.SAE Paper, 962057, 1996.
  • 4Pitsch H, Peters N. A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust Flame, 1998, 114:26~40.
  • 5ones WP, Whitelaw JH. Calculation methods for reacting turbulent flows: a review. Combust Flame, 1982, 48:1~26.
  • 6Pope SB, Chen YL. The velocity-dissipation PDF model for turbulent flows. Phys Fluids, 1990, A2:1437~1449.
  • 7Pope SB. Application of the velocity-dissipation PDF model to inhomogeneous turbulent flows. Phys Fluids,1991, A3:1947~1957.
  • 8Dopazo C. Probability density function approach for a turbulent axisymmetric heated jet. Centerline evolution. Phys Fluids, 1975, 18:397~404.
  • 9Pope SB. PDF methods for turbulent reactive flows. Prog Energy Combust Sci, 1985, 11:119~192.
  • 10Masri AR, Pope SB. PDF calculations of piloted turbulent nonpremixed flames of methane. Combust Flame, 1990, 81:13~29.

共引文献12

同被引文献76

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部