期刊文献+

火焰加速和爆燃向爆震转变过程的数值模拟及试验验证 被引量:4

Numerical simulation and experimental study on flame acceleration and deflagration to detonation transition
原文传递
导出
摘要 为了研究火焰加速现象、爆燃向爆震转变和不稳定爆震向稳定爆震的转变过程,对带环形孔板的爆震室进行了数值模拟.研究发现用较低的点火能量对爆震室中的燃料和氧化剂点火产生层流火焰,在孔板的阻碍作用和火焰诱导激波以及反射波的加速作用下,经过几个孔板的阻碍加强作用,在火焰和强激波之间的未燃物中形成爆炸中心,最终引爆未燃混气.同时对爆炸波向稳定爆震转变过程中遇到孔板产生三波点,以及马赫波向入射波转变的全过程进行了分析;对不同燃料在不同当量比下的起爆距离进行了研究,并与试验结果进行了对比.通过分析,对火焰加速和爆燃向爆震转变的过程有了更加全面的认识,为进一步试验提供了参考. Numerical simulations and experimental study in a detonation duct with orifice plates were carried out to study the phenomena of flame acceleration and the evolutions of deflagration to detonation transition(DDT) and unstable detonation to stable detonation.The results of numerical simulation show that laminar flame is generated by low energy ignition in detonation duct.The laminar flame becomes turbulent flame in the obstruction of orifice plate and under the acceleration action of shock waves and reflected waves.The turbulent flame is strengthened mutually with its induced shock waves.After a few orifice plates,"hot spots" appear between the flame and the sharp shock wave,and then detonate the unburned mixture.Triple-point is formed in the evolution of weak detonation to stable detonation when detonation wave meets orifice plates.The evolution of Mach-pole to incident wave transition was also analyzed.The detonation initiation distances at different equivalence ratios were studied contrastively.Through calculation and analysis,deep understanding of flame acceleration and DDT were obtained,providing useful information for further experiment.
作者 秦亚欣 高歌
出处 《航空动力学报》 EI CAS CSCD 北大核心 2011年第7期1488-1494,共7页 Journal of Aerospace Power
关键词 火焰加速 爆燃向爆震转变 爆震波 障碍物 数值模拟 4 flame acceleration deflagration to detonation transition detonation obstacles numerical simulation
  • 相关文献

参考文献12

二级参考文献23

  • 1陈永刚,何立明,刘建勋.时空守恒元和解元方法的爆震波一维数值模拟[J].推进技术,2005,26(3):256-259. 被引量:5
  • 2李牧,严传俊.脉冲爆震发动机引射模态数值模拟和验证[J].航空动力学报,2005,20(4):645-650. 被引量:4
  • 3范玮,严传俊,李强,胡承启,叶斌.脉冲爆震发动机尾喷管的实验[J].航空动力学报,2007,22(6):869-872. 被引量:12
  • 4Yungster S. Analysis of nozzle effects on pulse detonation engine performance[R]. AIAA-2003-1316.
  • 5Yungster S,Perkins H D. Multiple-cycle simulation of a pulse detonation engine ejector[R]. AIAA-2002-3630.
  • 6Eidelman S,Yang X. Analysis of the pulse detonation engine efficiency[R]. AIAA 98-3877.
  • 7Allgood D C. An experimental and computational study of pulse detonation engines [D]. Cincinnati: University of Cincinnati, 2004.
  • 8Kailasanath K. Recent Developments in the Research on Pulse Detonation Engines. AIAA Journal, 2003, 41(2):145-149
  • 9Roy G D, Frolov S M, Borisov A A, et al. Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective. Progress in Energy and Combustion Science, 2004, 30: 546- 549
  • 10Tangirala V E, Varatharajan B, Dean A J. Numerical Investigations of Detonation Initiation. AIAA 2003-0716

共引文献28

同被引文献34

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部