期刊文献+

基于验后概率的Bayesian序贯方差检验技术(Ⅰ) 被引量:5

Bayesian sequential variance test technique based on posterior probability(Ⅰ)
原文传递
导出
摘要 基于验后概率和"小概率事件原理",对复杂假设条件下,方差的Bayesian序贯检验,提出了基于Bayesian验后概率的序贯方差检验的基本假设,建立了Bayesian序贯方差检验(BSVT)模型,设计了临界值的求解算法,并对"强制"截尾条件下的假设检验判别准则进行了论述.最后,结合示例对BSVT模型的求解与应用进行了说明. Based on posterior probability and "small probability event principle", for the Bayesian sequential test on variance in complicated hypothesis conditions, the basic assumptions of Bayesian sequential variance test were presented, the Bayesian sequential variance test (BSVT) model was constructed, the algorithms of solving the critical value of sequential test were designed, and for given censored test number, the judge criteria for hypothesis testing were discussed. At last, the solution and application of BSVT model were illustrated with an example.
作者 刘琦 王囡
出处 《航空动力学报》 EI CAS CSCD 北大核心 2011年第7期1531-1536,共6页 Journal of Aerospace Power
基金 国家自然科学基金(70971133) 高等学校博士学科点专项科研基金(70571083)
关键词 航空航天装备 小概率事件原理 序贯检验 方差 Bayesian方法 Bayesian序贯方差检验(BSVT)模型 aerospace equipment small probability event principle sequential test variance Bayesian method Bayesian sequential variance test (BSVT) model
  • 相关文献

参考文献11

  • 1Desu M M,Raghavarao D. Sample size methodology[M]. Boston: Academic Press, 1990.
  • 2Wetherill G B,Glazebrook K D. Sequential methods in statistics[M]. 3rd ed. London : Chapman and Hall, 1986.
  • 3Ghosh B K. Sequential tests of statistical hypotheses[M]. Reading, Mass. : Addison Wesley, 1970.
  • 4Bartolucci A A, Bartojucci A D, Bae S, et al. A Bayesian method for computing sample size and cost requirements for stratified random sampling of pond water[J]. Environ mental Modelling & Software,2006,21(9):1319-1323.
  • 5GUO Bo,JIANG Ping, XING Yunyan. A censored sequen tial posterior odd test (SPOT) method for verification of the lnean time to repair[J]. IEEE Transactions on Reliability,2008,57(2) :243-247.
  • 6张堃.Bayes序贯检验方法[J].指挥技术学院学报,1998,9(4):89-95. 被引量:2
  • 7张金槐.正态总体下分布参数的Bayes序贯估计[J].国防科技大学学报,2002,24(2):95-100. 被引量:10
  • 8l.i X R, Li X B. Common fallacies in applying hypothesis testing[C]//Proceedings of the 11th International Conference on Information Fusion. Cologne : IEEE, 2008 : 1-8.
  • 9Hoff P D. A first course in Bayesian statistical methods [M]. New York: Springer Verlag, 2009.
  • 10Hamada M S,Wilson A G,Reese C S,et al. Bayesian reliability[M]. New York: Springer Science and Business Media, LLC, 2008.

二级参考文献3

共引文献9

同被引文献34

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部