期刊文献+

Polarization and modal field properties of quinquangular-core photonic crystal fibers

Polarization and modal field properties of quinquangular-core photonic crystal fibers
原文传递
导出
摘要 A kind of highly birefringent quinquangular-core photonic crystal fiber (Q-PCF) structure is proposed and analyzed by full-vector finite element method (FEM). The modal field, effective index, and birefringence properties are investigated. From the numerical results, it is found that the birefringence of the new polarization-maintaining PCFs is at least five times larger than that of the standard highly birefringent hexagonal PCFs (H-PCFs) with the same hole pitch, hole diameter, and whole hole area as that of the new PCFs at 1 550 nm. Moreover, the modal field of the new PCFs could be better restricted than that of the standard highly birefringent H-PCFs; hence, the loss of fibers could be reduced. A kind of highly birefringent quinquangular-core photonic crystal fiber (Q-PCF) structure is proposed and analyzed by full-vector finite element method (FEM). The modal field, effective index, and birefringence properties are investigated. From the numerical results, it is found that the birefringence of the new polarization-maintaining PCFs is at least five times larger than that of the standard highly birefringent hexagonal PCFs (H-PCFs) with the same hole pitch, hole diameter, and whole hole area as that of the new PCFs at 1 550 nm. Moreover, the modal field of the new PCFs could be better restricted than that of the standard highly birefringent H-PCFs; hence, the loss of fibers could be reduced.
机构地区 Automation College
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第9期8-10,共3页 中国光学快报(英文版)
关键词 BIREFRINGENCE Crystal structure Crystal whiskers Finite element method Nonlinear optics Photonic crystals POLARIZATION Birefringence Crystal structure Crystal whiskers Finite element method Nonlinear optics Photonic crystals Polarization
  • 相关文献

参考文献12

  • 1J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
  • 2M. Rajarajan, B. M. A. Rahman, A. K. M. S. Kabir, and K. T. V. Grattan, Proc. SPIE 5650, 345 (2005).
  • 3W. Sun, X. Liu, Q. Chai, J. Zhang, F. Fu, Y. Jiang, and T. A. Birks, Chin. Opt. Lett. 7, 921 (2009).
  • 4W. Sun, X. Liu, F. Fu, and J. Zhang, Chin. Opt. Lett. 6, 715 (2008).
  • 5N. Kejalakshmy, A. K. M. S. Kabir, G. M. Thakur, A. Agrawal, B. M. A. Rahman, and K. T. V. Grattan, Proc. SPIE 6767, 67670B (2007).
  • 6A. Massaro, L. Pierantoni, and T. Rozzi, Opt. Eng. 45, 115007 (2006).
  • 7K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, Opt. Express 9, 676 (2001).
  • 8K. Kishor, R. K. Shinha, A. D. Varshney, and J. Singh, Proc. SPIE 7420, 742015 (2009).
  • 9X. Li, H. Yang, Z. He, and Y. Zhang, in Proceedings of 2010 IEEE International Conference on Information and Automation 1438 (2010).
  • 10B. M. A. Rahman, N. Kejalakshmy, A. Agrawal, M. Uthman, and K. T. V. Grattan, in Proceedings of ICOP 2009-International Conference on Optics and Photonics 6369, 636904 (2006).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部