期刊文献+

Numerical study of detonation shock dynamics using generalized finite difference method 被引量:2

Numerical study of detonation shock dynamics using generalized finite difference method
原文传递
导出
摘要 The generalized finite difference method (GFDM) used for irregular grids is first introduced into the numerical study of thelevel set equation, which is coupled with the theory of detonation shock dynamics (DSD) describing the propagation of thedetonation shock front. The numerical results of a rate-stick problem, a converging channel problem and an arc channel prob-lem for specified boundaries show that GFDM is effective on solving the level set equation in the irregular geometrical domain.The arrival time and the normal velocity distribution of the detonation shock front of these problems can then be obtainedconveniently with this method. The numerical results also confirm that when there is a curvature effect, the theory of DSDmust be considered for the propagation of detonation shock surface, while classic Huygens construction is not suitable anymore. The generalized finite difference method (GFDM) used for irregular grids is first introduced into the numerical study of thelevel set equation, which is coupled with the theory of detonation shock dynamics (DSD) describing the propagation of thedetonation shock front. The numerical results of a rate-stick problem, a converging channel problem and an arc channel prob-lem for specified boundaries show that GFDM is effective on solving the level set equation in the irregular geometrical domain.The arrival time and the normal velocity distribution of the detonation shock front of these problems can then be obtainedconveniently with this method. The numerical results also confirm that when there is a curvature effect, the theory of DSDmust be considered for the propagation of detonation shock surface, while classic Huygens construction is not suitable anymore.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第10期1883-1888,共6页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 11002029)
关键词 generalized finite difference method detonation shock dynamics level set equation propagation of detonation shockfront irregular grids 广义差分法 数值研究 爆轰 有限差分法 不规则网格 冲击动力学 计算结果 边界问题
  • 相关文献

参考文献11

  • 1陈森华,张旭,柏劲松.贴体坐标系中多维非理想爆轰波阵面传播计算的位标函数法[J].高压物理学报,2000,14(4):280-284. 被引量:9
  • 2Wen S G.The LS Method Applied to Three Dimensional Detonation Wave Propagation[]..2001
  • 3Zhong M.The Numerical Method and Simulation for Propagating Front of Non-ideal 3D Detonation[]..2005
  • 4Orkisz J.Finite difference method (Part III)[].Handbook of Computational Solid Mechanics Survey and Comparison of Contemporary Methods.1998
  • 5Prieto F U,Benito Munoz J J,Corvinos L G.Application of the generalized finite difference method to solve the advection-diffusion equation[].Journal of Computational and Applied Mathematics.2011
  • 6D. Scott Stewart and John B. Bdzil.The shock dynamics of stable multidimensional detonation[].Combustion and Flame.1988
  • 7Benito J J,Urena F,Gavete L.Solving parabolic and hyperbolic equations by the generalized finite difference method[].Jouunal of Computational and Applied Math-ematics.2007
  • 8Bdzil J B,Stewart D S.The dynamics of detonation in explosive systems[].The Annual Review of Fluid Mechanics.2007
  • 9Bdzil J B,Stewart D S.Modeling two-dimensional deto-nations with detonation shock dynamics[].Fhys Fluids A.1989
  • 10Yao Jin,Stewart D.On the dynamics of multi-dimensional detonation[].Journal of Fluid Mechanics.1996

二级参考文献2

  • 1[1] Aslam T D,Bdzil J B,Stewart D S.Level S et Methods Applied to Modeling Detonation Shock Dynamics [J]. J Comp Phys,19 96,126:390-409.
  • 2[2] Osher S,Sethian J A.Front Propagating wi th Curvature-Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations [J]. J Comp Phys,1988,79:12-49.

共引文献8

同被引文献11

  • 1ZHAO Zhen1,2, LIU Caishan2 & CHEN Bin2 1. Beijing Institute of Graphic Communication, Beijing 102600, China,2. Department of Mechanics & Engineering Science, Peking University, Beijing 100871, China.The numerical method for three-dimensional impact with friction of multi-rigid-body system[J].Science China(Physics,Mechanics & Astronomy),2006,49(1):102-118. 被引量:8
  • 2LU Peng, LI ShuiXiang , ZHAO Jian & MENG LingYi State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics & Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China.A computational investigation on random packings of sphere-spherocylinder mixtures[J].Science China(Physics,Mechanics & Astronomy),2010,53(12):2284-2292. 被引量:2
  • 3LIU LianFeng1,2,ZHANG Lei1 & LIAO ShuFang1 1 Department of Mathematical Sciences,Xi’an Jiaotong-Liverpool University,Suzhou 215123,China,2 School of Science,Xi’an Jiaotong University,Xi’an 710049,China.Structural signature and contact force distributions in the simulated three-dimensional sphere packs subjected to uniaxial compression[J].Science China(Physics,Mechanics & Astronomy),2010,53(5):892-904. 被引量:2
  • 4Wescott, B.L.,Stewart, D. Scott,Davis, W.C.Equation of state and reaction rate for condensed-phase explosives[].Journal of Applied Physics.2005
  • 5Johnson, J. N.,Tang, P. K.,Forest, C. A.Shock‐wave initiation of heterogeneous reactive solids[].Journal of Applied Physics.1985
  • 6John B. Bdzil,D. Scott Stewart.Time-dependent two-dimensional detonation: the interaction of edge rarefactions with finite-length reaction zones[].Journal of Fluid Mechanics.1986
  • 7J.B. Bdzil,D.S. Stewart.Modeling two-dimensional detonations with detonation shock dynamics[].Physics of Fluids A Fluid Dynamics.1989
  • 8Tarver C M,McGuire E M.Reactive flow modeling of the interaction of TATB detonation waves with inert materi-als[].Proceedings of the th International Symposium of Detonation.2002
  • 9J.Starkenberg."Modeling Detonation Propagation and Failure Using Explosive Initiation Models in a Conventional Hydrocode"[].Proceedings of the th Symposim(International) on Detonation.2002
  • 10FAN KangQi,WANG WeiDong,ZHU YingMin,ZHANG XiuYan.A multiscale modeling approach to adhesive contact[J].Science China(Physics,Mechanics & Astronomy),2011,54(9):1680-1686. 被引量:2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部