期刊文献+

乏信息材料布氏硬度测量不确定度蒙特卡罗评定 被引量:4

Poor Information Material Brinell Hardness Measurement Uncertainty Evaluation Based on Monte Carlo Method
下载PDF
导出
摘要 应用蒙特卡罗方法实现小样本材料布氏硬度测量不确定度的评定。依据测量误差源标定数据或布氏硬度测量结果两种数据处理途径,分析已知数据的概率分布特性,通过产生大样本量的随机数进行仿真,拓宽数据样本空间,进而分别依据不确定度合成和贝塞尔公式计算出乏信息材料布氏硬度测量不确定度。通过具体的测量实例验证了本方法的可行性。 Based on poor Brinell hardness measurement information, a novel uncertainty evaluation method was described. According to analyzing the data of all error sources or the limited measurement results, characteristics of these data were gained. And then, by big sample random simulations, sample space of these data can be expanded. Finally, in terms of the Bessel formula and the uncertainty synthesis principle, poor information Brinell hardness measurement uncertainty can be evaluated rightfully. By a practical Brinell hardness measurement, the validity of proposed method was proved.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2011年第9期225-229,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 中国博士后科学基金资助项目(023240008)
关键词 布氏硬度测量 不确定度 乏信息 蒙特卡罗方法 Brinell hardness measurement, Uncertainty, Poor information, Monte Carlo method
  • 相关文献

参考文献2

二级参考文献15

  • 1Gonzalez A,Herrador M.Evaluation of measurement uncertainty in analytical assays by means of Monte-Carlo simulation[J].Talanta,2004,64(2):415 ~ 422.
  • 2Siebert B,Sommer K.New developments of the GUM and Monte Carlo techniques[J].Technisches Messen,2004,71(2):67~80.
  • 3Papadopoulos C,Yeung H.Uncertainty estimation and Monte Carlo simulation method[J].Flow Measurement and Instrumentation,2001,12(4):291 ~ 298.
  • 4Nicola L,Carlo M,Sara S.Modeling ADC Nonlinearity in Monte Carlo Procedures for Uncertainty Estimation[A].Conference Record-IEEE Instrumentation and Measurement Technology Conference[C].Como,Italy:2004,522 ~ 527.
  • 5Ferrero A,Salicone S.A Monte Carlo-like approach to uncertainty estimation in electric power quality measurements[J].COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2004,23(1),119 ~ 132.
  • 6Nuccio S, Spataro C. Approaches to evaluate the virtual instrumentation measurementuncertainties [ A ]. IEEE IMTC [C]. Budapest:2001, 84-89.
  • 7ISO. Guide to the Expression of Uncertainty in Measurement. 1995 [S].
  • 8Chrzanowski K, Matyszkiel R, Szulim M. Calculations of uncertainty in measurements [A]. XVI IMEKO World Congress[C] . Wien:2000, 312 - 316.
  • 9Ghiani E, Locci N, Muscas C. Evaluation of uncertainty in measurements based on digitized data [J]. Measurement, 2002, 32(4) : 265-272.
  • 10Peretto L. Uncertainty contribution of the analog conditioning block in DSP- based instruments[J]. IEEE Trans on Instru and Meas, 2007, 56(3) : 1000-1005.

共引文献42

同被引文献37

  • 1祝连庆,陈青山,董明利,张舒.基于双频激光干涉的坐标测量机测量不确定度检定系统[J].仪器仪表学报,2006,27(z1):108-109. 被引量:5
  • 2曹宏燕.分析测试中测量不确定度及评定 第一部分 测量不确定度概述[J].冶金分析,2005,25(1):77-81. 被引量:46
  • 3化妆品卫生规范2007版[S].中华人民共和国卫生部.
  • 4JJGl96-2006常用玻璃量器[S].北京:中国质检出版社,2006.
  • 5JJF1001-2011通用计量术语及定义[s].北京:中国计量出版社,2011.
  • 6Qiu H,Nisitani H,Kubo A. Autonomous form measurement onmachining centers for free-form surfaces[J].International Journal of Ma-chine Tools & Manufacture,2004,(09):961-969.
  • 7Hicks R A,Croke C. Designing coupled free-form surfaces[J].Journalof the Optical Society of America A:Optics and Image Science andVision,2010,(10):2132-2137.
  • 8费业泰.误差理论与数据处理[M]{H}北京:机械工业出版社,2004.
  • 9Rajabalinejad M,Demirbilek Z. Bayesian Monte Carlo method formonotonic models applying the generalized beta distribution[J].Engi-neering Failure Analysis,2011,(18):1153-1161.
  • 10Guideto the Expression of Uncertainty in Measurement, Geneva, [s].

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部