期刊文献+

基于次序二叉树SVM的矿井提升机制动系统故障诊断 被引量:3

Fault diagnosis on braking systems of mine hoists based on ordering binary tree SVM
原文传递
导出
摘要 介绍几种传统的支持向量机(SVM),提出了一种基于次序二叉树支持向量机的多类分类算法。该算法采用样本分布半径和分布距离估算各类别样本在高维特征空间中的分布情况,更精确地确定其在特征空间中的分类区域。利用该算法对提升机制动系统的故障诊断进行仿真分析,结果表明,该方法具有诊断速度快且故障识别率高的特点。 The paper introduces several traditional support vector machines(SVM),and proposes a multi-class classification algorithm based on ordering binary tree SVM.In the algorithm,the sample distribution radius and sample distribution distance are used to estimate the distribution situation of various samples among the high-dimension characteristic space,so as to determine their classification zones in the characteristic space more precisely.After the simulation analysis of fault diagnosis on the hoist braking system by the algorithm,it is showed that the algorithm is characterized by high diagnosis velocity and high fault identification ratio.
出处 《矿山机械》 北大核心 2011年第9期46-49,共4页 Mining & Processing Equipment
关键词 支持向量机 故障诊断 二叉树 矿井提升机 support vector machine(SVM) fault diagnosis binary tree mine hoist
  • 相关文献

参考文献8

  • 1马军.盘式闸制动系统可靠性对提升机安全运行的影响[J].煤矿机械,2001,22(9):36-38. 被引量:8
  • 2Widodo A, Yang B S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors[J]. Expert Systems with Applicaltions, 2007, 33(1).. 241-250.
  • 3Ravikumar B, Thukaram D, Khincha H P. Application of sup- port vector machines for fault diagnosis in power transmission system [J]. let Generation Transmission & Distribution, 2008, 2(1): 119-130.
  • 4Abbasion S, Rafsanjani A, Farshidianfar A, et al. Rolling ele- ment beatings multi-fault classification based on the wavelet de- noising and support vector machine[J]. Mechanical Systems and Signal Processing, 2007, 21(7): 2933-2945.
  • 5Acevedo F J, Maldonado S, Dominguez E, et al. Probabilistic support vector machines for multi-class alcohol identification [J]. Sensors and Sctuatiors B-Chemical, 2007, 122 (1): 227- 235.
  • 6Vapnik V N. The nature of statistical learning theory [M]. Springer: Verlag, 1995.
  • 7Sungmoon C, Sang H O, Soo-Young L. Suppor vector machines with binary tree architecture for multi-class classification [J]. Neural Informati on Processing-Letters and Reviews, 2004, 2(3): 47-51.
  • 8马笑潇,黄席樾,柴毅.基于SVM的二叉树多类分类算法及其在故障诊断中的应用[J].控制与决策,2003,18(3):272-276. 被引量:78

二级参考文献5

  • 1耿遵敏,宋孔杰,李兆前,张兴华,万德玉.关于柴油机振声特点及动态诊断方法的研究与讨论[J].内燃机学报,1995,13(2):140-147. 被引量:32
  • 2马笑潇.智能故障诊断中的机器学习新理论及其应用[D].重庆:重庆大学,2002.
  • 3葛世荣.矿井提升机可靠性技术[M].徐州:中国矿业大学出版社,1994..
  • 4Vapnic 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5李国华,张永忠.机械故障诊断[M].北京:化学工业出版社,1998.

共引文献84

同被引文献41

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部