摘要
使用中国吉林省1978~2009年人口、GDP和单位GDP能耗数据,采用BP神经网络模型分2种情景预测了吉林省2020年CO2排放量.结果表明,如果以吉林省2005年单位GDP的CO2排放为参照,2种情景下,吉林省2020年单位GDP的CO2排放分别降低55.17%和58.79%;如果以中国2005年平均水平为参照,吉林省2020年单位GDP的CO2排放分别降低35.40%和40.62%.
Using the data of population,GDP,and energy intensity in Jilin province from 1978 to 2009 as input data,we use BP neural network to predict carbon dioxide emissions in 2020 in Jilin province under reference and emission mitigation scenarios.The results show that,if we use carbon dioxide emissions per unit of GDP in 2005 in Jilin province as a reference,CO2 emissions per GDP in 2020 will be reduced by 55.17% and 58.79% under the two scenarios,respectively.The results also show that,if we use the national average level in 2005 as a reference,CO2 emissions per unit of GDP in 2020 in Jilin province will be reduced by 35.40% and 40.62%,respectively.
出处
《中国科学院研究生院学报》
CAS
CSCD
北大核心
2011年第5期617-623,共7页
Journal of the Graduate School of the Chinese Academy of Sciences
基金
国家自然科学基金(41071108)
吉林省科技引导计划软科学项目(20100640)
中国科学院东北地理与农业生态研究所前沿领域项目(KZCX3-SW-NA09-07)资助
关键词
CO2排放
情景分析
BP神经网络
吉林
CO2 emissions
scenario prediction
BP artificial neural network
Jilin province