期刊文献+

电力系统无功优化的柯西粒子群算法 被引量:10

Cauchy Particle Swarm Optimization for Reactive Power Optimization
下载PDF
导出
摘要 针对传统粒子群算法易陷入局部最优解、收敛速度慢的缺点,提出了柯西粒子群算法,并首次将其应用于电力系统无功优化问题。柯西粒子群算法是基于柯西分布的期望和方差均不存在的原理,对每一代粒子的全局极值进行柯西变异,以此来增加种群的多样性,扩大全局最优粒子的搜索区域,以尽快获得适应度更优的个体,从而可以避免算法陷入局部最优解,同时也加快了收敛速度。用柯西粒子群算法对IEEE-14节点标准测试系统进行无功优化计算,试验结果表明,与其他算法相比,柯西粒子群算法具有较强的全局寻优能力,且收敛速度快、鲁棒性好,能够更有效地解决电力系统无功优化问题。 Taking into the drawbacks of traditional particle swarm optimization (PSO) algorithm such as premature and slow searchspeed, Cauchy particle swarm optimization (CPSO) algorithm was proposed and first applied in reactive power optimization. CPSO is based on the principles of that the expectation and variance of Cauchy distribution is not exist, Cauchy mutation was applied to the global best particle of each generation in CPSO, it would increase the diversity of the population, extend the search space of the global partic)e, obtain the individual which has better fitness as quickly as possible, avoid the algorithm fall into local optima, also accelerate the convergence. The new algorithm was implemented on the IEEE-14 bus system and compared with other optimization algorithms' , the results show that HPSO has stronger global optimal searching ability, faster convergence rate, better robustness and can more effectively solve the reactive power optimization problem in power system.
出处 《控制工程》 CSCD 北大核心 2011年第5期758-761,共4页 Control Engineering of China
基金 国家科技部政府间科技合作项目(2009014) 上海市高等学校高地建设项目
关键词 电力系统 无功优化 柯西粒子群算法 power system reactive power optimization hybrid particle swarm optimization
  • 相关文献

参考文献8

  • 1袁松贵,吴敏,彭赋,朱豆,杨珏.改进PSO算法用于电力系统无功优化的研究[J].高电压技术,2007,33(7):159-162. 被引量:24
  • 2李剑,李智峰,姜伟.基于改进PSO算法的电力系统无功优化[J].科技风,2009(24). 被引量:2
  • 3Wang S Z, Ma L, Sun D. Hybrid differential evolution particle swarm optimization algorithm for reactive power optimization [ C ]. Chengdu (China) :Asia-Pacific Power and Energy Engineering Conference (APPEEC) , 2010.
  • 4Wang W J, Xue Y F, Zhang L P. A hybrid PSO algorithm with transposon for muhiobjeetive optimization [ J]. Communications in Computer and Information Science ,2010,13 ( 1 ) :76-84.
  • 5Wang H, Cheng H, Liu Y, et al. A hybrid particle swarm algorithm with cauchy mutation [ C ]. Proceedings of the 2007 IEEE Swarm Intelligence Symposium,2007,12 ( 1 ) : 356-360.
  • 6He L,Yao N,Wu J,et al. Application of modified PSO in the optimization of reactive power[ C ]. Guilin (China) :2009 Chinese Control and Conference( CCDC 2009 ) ,2009.
  • 7马立新,王守征,吕新慧,屈娜娜.电力系统无功优化的反向优化差分进化算法[J].控制工程,2010,17(6):803-806. 被引量:11
  • 8Liu C L. New dynamic constrained optimization PSO algorithm [ C ]. Jinan (China) : Proceedings-4th International Conference on Natural Computation( ICNC2008 ) ,2008.

二级参考文献26

共引文献33

同被引文献81

引证文献10

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部