期刊文献+

基于压缩感知的GPR成像算法 被引量:4

GPR imaging algorithm based on compressive sensing
下载PDF
导出
摘要 传统的探地雷达(ground penetrating radar,GPR)数据采集需要满足Nyquist采样定理,严重影响了GPR成像效率。基于压缩感知理论,稀疏信号可以在远低于Nyquist采样率的情况下通过求解l1范数约束下的凸最优化问题得到精确恢复,克服了传统算法中数据采集的局限。将压缩感知理论应用于GPR成像,利用仿真数据系统分析了测量矩阵维度、信噪比、数据损失程度和目标密集度等因素对成像结果的影响。实验结果表明,与传统的GPR成像算法相比,压缩感知成像算法成像精度高,虚警少,对噪声和数据损失有一定的鲁棒性,可以大大节省数据存储空间和采集时间。 The Nyquist sampling theorem must be satisfied in traditional data acquisition of the ground pen etrating radar (GPR), which degrades the imaging efficiency dramatically. However, the theory of compressive sensing (CS) shows that sparse signals can be precisely reconstructed by solving a convex l1 minimization problem at a rate significantly below the Nyquist rate, and it can overcome the shortcomings of traditional data acquisi tion. The CS theory is applied into the GPR imaging, and the effects on imaging results caused by the dimension of measurement matrix, signal to noise ratio (SNR), incomplete data and compactness of targets are analyzed systematically through the simulated data. Experimental results show that compared with the traditional GPR imaging algorithm, the proposed algorithm has higher precision and fewer false alarms. This algorithm is also robust to noise and incomplete data, and saves the resources of data storage and acquisition.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第9期1995-2001,共7页 Systems Engineering and Electronics
关键词 探地雷达成像 压缩感知 Nyquist采样定理 反向投影算法 ground penetrating radar imaging compressive sensing Nyquist sampling theorem back projection algorithm
  • 相关文献

参考文献18

  • 1Daniels D. Applications of impulse radar technology[C]// Proc. of the International Conference on Radar, 1997 : 667 - 672.
  • 2Grasmueck M, Weger R, Horstmeyer H. Full-resolution 3D GPR imaging for geoscience and archeology[C]// Proc. of the 10th International Conference on Ground Penetrating Radar, 2004:329 -332.
  • 3Halman J I, Shubert K A, Ruck G T. SAR processing of ground-penetrating radar data for buried UXO detection: results from a surface-based system[J]. IEEE Trans. on Antennas and Propagation, 1998,46(7) : 1023 - 1027.
  • 4Zetic R, Sachs J, Thoma R. Modified cross-correlation back projec- tion for uwb imaging: numerical examples[C]// Proc. of the IEEE International Conference on Ultra- Wideband , 2005 : 650 - 654.
  • 5Meincke P. Linear GPR imaging based on electromagnetic plane-wave spectra and diffraction tomography[C]// Proc. of the 10th Interna- tional Conference on Ground Penetrating Radar, 2004 : 55 - 58.
  • 6Hansen T B, Johansen P M. Inversion scheme for ground penetrating radar that takes into account the planar air-soil interface[J]. IEEE Trans. on Geoscience and Remote Sensing ,2000,38(1) :496 - 506.
  • 7Gu K, Wang G, Li J. Migration based SAR imaging for ground penetrating radar systems[J]. IEE Radar , Sonar, and Naviga- tion ,2004,151 (5) : 317 - 325.
  • 8Xu X, Miller E L. Optimization of migration method to locate buried object in lossy medium[C]// Proc. of IEEE International Geosci- ence arid Remote Sensing Symposium, 2002:337 - 339.
  • 9Fisher E, McMechan G A, Annan A P. Examples of reverse- time migration of single channel, ground-penetrating radar pro- files[J]. Geophysics,1992,57(4) :577 - 586.
  • 10Leuschen C J, Plumb R G. A matched-filter based reverse-time mi- gration algorithm for ground-penetrating radar data [J].IEEE Trans. on Geoscience and Remote Sensing, 2001,39 (5):929 - 936.

二级参考文献18

  • 1Daniels D J. Surface-penetrating radar[J]. Electronics and Communication Engineering Jourual, 1996, 8(4): 165-182.
  • 2Fang G Y. The research activities of ultrawide-band (UWB) radar in China[C]. IEEE International Conference on Ultra-Wideband, Marina Mandarin Hotel, Singapore, Sept. 24-26, 2007: 43-45.
  • 3Xu X and Miller E L. Optimization of migration method to locate buried object in lossy medium[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, Jun. 24-28, 2002: 337-339.
  • 4Leuschen C J and Plumb R G. A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 929-936.
  • 5Carin L, Geng N, and McClure M, et al.. Ultra-wide-band synthetic-aperture radar for mine-field detection[J]. IEEE Antennas and Propagation Magazine, 1999, 41(1): 18-33.
  • 6Hayakawa H, Nadamoto A, and Uesaka S. 3D radar imaging of buried objects using arbitrary scaning GPR[C]. Eighth International Conference on Ground Penetrating Radar, Queensland, Australia, May 23-26, 2000: 273-276.
  • 7Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 8Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006,59(8): 1207-1223.
  • 9Baraniuk R. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 10Candes E J. Compressive sampling[C]. International Congress of Mathematicians, Madrid, Spain, 2006, 3: 1433-1452.

共引文献48

同被引文献31

  • 1杜文超,王国宏,高学强.低信噪比条件下在短时信号中提取目标径向加速度方法研究[J].中国科学(E辑),2007,37(7):923-943. 被引量:12
  • 2AnooP K,Mano J A,Divakar K,et al.A novel time-frequency approach for acceleration estimation from a single PRI[C]//Proc.of the 5th International Symposium on Signal Processing and Its Applications,1999:531-534.
  • 3Xia X G.Discrete chirp Fourier transform and its application to chirp rate estimation[J].IEEE Trans.on signal processing,2000,48(11):3122-3133.
  • 4Candès E.The restricted isometry property and its implications for compressed sensing[J].Applied & Computational Mathematics,California Institute of Technology,2008,346 (9/10):589-592.
  • 5Candès E,Romberg J.Sparsity and incoherence in compressive sampling[J].Inverse Problems,2007,23(3):969-985.
  • 6Candès E,Wakin M.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
  • 7Candès E,Eldar Y C,Randall P.Compressed sensing with coherent and redundant dictionaries[J].Applied and Computational Harmonic Analysis,2011,31(1):59-73.
  • 8Stanley O,Yu M,Dong B,Yin W T.Fast linearized bregman iteration for compressive sensing and sparse denoising[J].Communications in Mathematical Sciences,2010,8(1):93-111.).
  • 9Baraniuk R G,Houston T X,Duarte M F,et al.Bayesian compressive sensing via belief propagation[J].IEEE Trans.on InforMation Theory,2010,56(4):1982-2001.
  • 10Ewout V D,Michael P F.Probing the pareto frontier for basis pursuit solution[J].Society for Industrial Applied Mathematics,2008,31(2):890-912.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部