期刊文献+

线性混合模型的光谱解混算法综述 被引量:7

A review on spectral unmixing algorithms based on linear mixing model
原文传递
导出
摘要 混合像元的存在不仅影响了基于高光谱图像的地物识别和分类精度,而且已经成为遥感科学向定量化发展的主要障碍。目前的混合像元分解算法大多采用线性混合模型,其关键步骤为端元提取。文中从线性混合模型的定义出发,总结了近年来提出的端元提取算法,并重点对SMACC、VCA、SGA等算法进行了深入的分析,最后总结了混合像元分解的发展趋势。 The mixels not only influence the accuracy of target detection and classification based on the hypersepectral images, but also greatly hinder the development of quantitative remote sensing. Now, most of the spectral unmixing algorithms are based on the linear spectral mixing model, and the model' s key procedure is endmember extraction. This paper firstly introduced the linear mixing model, then summarized the endmember extraction algorithms and deeply analyzed several endmember extraction algorithms ( SMACC, VCA, SGA, etc) . After that, the trends of the spectral unmixing were summarized.
出处 《测绘科学》 CSCD 北大核心 2011年第5期42-44,共3页 Science of Surveying and Mapping
关键词 混合像元 光谱解混 线性混合模型 端元 mixel spectral unmixing linear mixing model endmember
  • 相关文献

参考文献24

  • 1Kumar, H A Min. Some issues related with sub-pixel classification using HYPERION data [ C ] . ISPRS XXI VII, 2008, Beijing: 249-254.
  • 2Nirmal Keshava, John F Mustard. Spectral Unmixing [ C ] //IEEE Signal Processsing Magazine, 2002: 44-57.
  • 3Charles Ichoku, Arnon Karnieli. A review of mixture modeling techniques for sub-pixel land cover estimation [ J ] . Remote Sensing Reviews, 1996 ( 13 ) : 161-186.
  • 4J. B. Adams, A R Gillespie. Remote Sensing of Landscapes with Spectral Images: A physical Modeling Approach [ M ] . London : Cambridge University Press, 2006.
  • 5Maurice D Craig. Minimum Volume Transforms for Remotely Sensed Data [ C ] //IEEE Transactions on Geoscience and Remote Sensing, 1994, Vol. 32 : 542-552.
  • 6Boardman, J W, Kruse, F A, Green, R O, Mapping target signatures via partial unmixing of AVIRIS data : in Summaries [ C ] . Fifth JPL Airborne Earth Science Workshop, JPL Publication 95-1 ( 1 ) : 23-26.
  • 7Michael E Winter. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data [ C ] . Imaging Spectrometry V, Proceedings of SPIE, 1999, vol. 3753, Denver, USA: 266- 275.
  • 8Michael E Winter. Fast Autonomous Spectral End-member Determination In Hyperspectral Data [ C ] . Proceedings of the Thirteenth International Conference on Applied Geologic Remote Sensing, Vancouver, B.C., Canada, 1999, Vol. II: 337-344.
  • 9Agustin Ifarraguerri and Chein-I Chang. Multispectral and Hyperspectral Image Anlysis with Convex Cone [ C ] // IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2) : 756-770.
  • 10Neville, R A, Staenz K, Szeredi T, Lefebvre J, Hauff P. Automatic endmember extraction from hyperspectral data for mineral exploration [ C ] . Proceedings of Fourth International Airborne Remote Sensing Conference and Exhibition / 21st Canadian Symposium on Remote Sensing, Ottawa, Canada, 1999, vol. 2 : 891-897.

二级参考文献18

  • 1薛绮,匡纲要,李智勇.基于线性混合模型的高光谱图像端元提取[J].遥感技术与应用,2004,19(3):197-201. 被引量:30
  • 2惠巍巍,衣德萍,廖彩霞,曲林.混合像元分解研究综述[J].林业科技情报,2007,39(1):2-3. 被引量:21
  • 3Neville R A,Staenz K,Szeredi T,et al.Automatic Endmember Extraction From Hyperspectral Data For Mineral Exploration [A].The Four International Airborne Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing[C].Ottawa,Ontario,Canada,19
  • 4Jimenez-Rodriguez L O,Rivera-Medina J.Integration of Spatial and Spectral Information in Unsupervised Classification for Multispectral and Hyperspectral Data [J].Proc SPIE Image and Signal and Processing for Remote Sensing,1999,1:24~33.
  • 5Hu Y H,Lee H B,Scarpace F L.Optimal Linear Spectral Unmixing[J].IEEE Trans.Geosci.Remote Sensing,1999,37:639-644.
  • 6Winter M E.An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data [J].Proc SPIE Imaging Spectrometry,1999.266-275.
  • 7Gillis D,Palmadesso P,Bowles J.An Automatic Target Recongnition System for Hyperspectral Imagery Using Orasis[J].Proc SPIE,2001,4381:34-43.
  • 8Keshava N,Mustard J E.Spectral Unmixing[J].IEEE Signal Processing Magazine,2002,1 :44- 57.
  • 9Dennison P E,Roberts D A.Endmember Selection for Multiple Endmember Spectral Mixture Analysis Using Endmember Average RMSE[J].Remote Sensing of Environment,2003,87:123-135.
  • 10Bateson C A,Asner G P,Wessman C A.Endmember Bundles:A New Approach to Incorporating Endmember Variability into Spectral Mixture Analysis[J].IEEE Trans.Geosci Romote Sensing,2000,38:1083-1094.

共引文献34

同被引文献133

引证文献7

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部