期刊文献+

基于负刚度预载荷机构的锥形介电型EAP驱动器研究 被引量:1

Research of Conically-shaped Dielectric Electroactive Polymer Actuators Based on Negative Stiffness Preload Mechanism
原文传递
导出
摘要 为了便于对介电型EAP驱动器进行优化设计,针对介电型EAP驱动器进行建模是极其重要的。结合弹性大变形理论及Maxwell应力建立介电型EAP材料的机电耦合模型,分析一种可以提高驱动器性能的负刚度预载荷机构,在此基础上建立基于负刚度预载荷机构的锥形介电型EAP驱动器模型。通过对微分代数方程组的求解,分析预载荷机构对驱动器驱动性能的影响,得出特定尺寸的锥形驱动器在不同驱动电压下的电压-位移曲线以及驱动器薄膜中的主延伸率、主应力分布情况,同时给出了锥形驱动器的力-位移曲线。最后将试验结果与理论分析进行比较,给出了导致偏差的原因。结果表明,本文建立的模型可以为锥形介电型EAP驱动器的设计应用提供参考依据。 Modeling a dielectric electroactive polymer (EAP) actuator is crucial for the design and optimization of actuators. By combining the large deformation elastic theory of membranes and Maxwell stress, this paper builds a model that describes the electromechanical coupling of dielectric EAP materials. A negative stiffness preload mechanism is analyzed which can significantly improve the actuation characteristics of an EAP actuator, and a model of a conically-shaped dielectric EAP actuator with negative stiffness preload mechanism is founded. By computing the nonlinear ordinary differential algebraic equations, the main factors that contribute to the performance of the conically-shaped dielectric EAP actuator are analyzed. The voltage-displacement curves and principal stretch ratio and the distribution of principal stress in the membrane under different voltages are obtained. At the same time, the force-displacement curve of the EAP actuator with voltage on or off is also derived. Finally, factors contributing to the deviation between theoretical analysis and experimental results are listed. The results show that the proposed model can guide the design and application of conically-shaped dielectric EAP actuators.
出处 《航空学报》 EI CAS CSCD 北大核心 2011年第9期1746-1754,共9页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(50975139) 机器人学国家重点实验室开放基金(RLO200912)~~
关键词 负刚度 介电型EAP 预载荷机构 驱动器 机电耦合 negative stiffness dielectric EAP preload mechnism actuator electromechanical coupling
  • 引文网络
  • 相关文献

参考文献16

  • 1Yoseph B C. Electroactive polymer (EAP) actuators as artificial muscles-reality, potential and challenges[M]. Bellingham: SPIE Press, 2004.
  • 2Dubowsky S, Lagnemma K, Liberatore S, et al. A concept mission: microbots for large-scale planetary surface and subsurface exploration//AIP Conference Proceedings. 2006: 1449-1458.
  • 3Jhong Y Y, Huang C M, Hsieh C C, et al. Improvement of viscoelastic effects of dielectric elastomer actuator and its application for valve devices//Proceedings of SPIE. 2007, 6524: 65241Y.1-65241Y.9.
  • 4Goulbourne N C, Frecker M I, Mockensturm E, et al. Electro-elastic modeling of a dielectric elastomer diaphragm for a prosthetic blood pump//Proceedings of SPIE. 2004, 5385: 122-133.
  • 5Aschwanden M, Beck M, Stemmer A, et al. Diffractive transmission grating tuned by dielectric elastomer actuator [J]. IEEE Photonics Technology Letters, 2007, 19(14) : 1090-1092.
  • 6王化明,朱剑英,叶克贝,何均,游有鹏.介电弹性体线性驱动器研究[J].机械工程学报,2009,45(7):291-296. 被引量:9
  • 7Luan Y G, Wang H M, Zhu Y L. Design and implementation of cone dielectric elastomer actuator with double-slider mechanism[J]. Journal of Bionic Engineering, 2010, 7(Supplement 1): S212-S217.
  • 8Suo Z G, Zhao X H, Greene W H. A nonlinear field theory of deformable dielectrics[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 467-486.
  • 9Goulbourne N C, Mockensturm E M, Frecker M I. Electro-elastomers: large deformation analysis of silicone membranes[J]. International Journal of Solids and Structures, 2007, 44(9): 2609-2626.
  • 10Toupin R A. The elastic dielectric[J]. Journal of Rational Mechanics and Analysis, 1956(5): 850-915.

二级参考文献17

  • 1陈娟,赵翠清,祁新梅,居刚.电场活化聚合物的实验研究[J].高分子材料科学与工程,2007,23(4):250-253. 被引量:12
  • 2PLANTE J S,DUBOWSKY S.On the properties of dielectzic elastomer actuators and their design implications[J].Smart Materials and Structures,2007,16:227-236.
  • 3GOULBOURNE N,FRECKER M,MOCKENSTURM E,et al.Modeling of a dielectric elastomer diaphragm for a prosthetic blood pomp[C]//SPIE.Symposium on Smart Structures and Materials:Electroactive Polymer Actuators and Devices,March 14-18,2004,San Diego,California.Bellingham:SPIE,5385:122-133.
  • 4BAR-COHEN Y.Electroactive polymers (EAP) as actuators for potential future planetary mechanisms[C]//JPL.NASA/DoD Conference on Evolvable Hardware,June 24,2004,Seattle,Washington.Pasadena:JPL,309-317.
  • 5ASCHWANDEN M,BECK M,STEMMER A.Diffractive transmission grating tuned by dielectric elastomer actuator[J].IEEE Photonics Technology Letters,2007,19(14):1090-1092.
  • 6KORNBLUH R,PELRINE R,PRAHLAD H.Electroacfive polymers:An emerging technology for MEMS[C]// SPIE.MEMS/MOEMS Components and Their Applications,January 26,2004,San Jose,CA.Bellingham:SPIE,5344:13-27.
  • 7PEI Q B,PELRINE R,STANFORD S,et al.Electroelastomer rolls and.their application for biomimetic walking robots[J].Synthetic Metals,2003,135:129-131.
  • 8PELRINE R E,KORNBLUH R D,JOSEPH J P.Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation[Y].Sensors and Actuators A,1998,64(1):77-85.
  • 9PELRINE R E,KORNBLUH R D,PEI Q B,et al.High-speed electrically actuated elastomers with over 100% strain[J].Science,2000,287(5 454):836-839.
  • 10PEI Q B,PELRINE R,ROSENTHAL M,et al.Recent progress on electroelastomer artificial muscles and their application for biomimetic robots[C]//SPIE.Symposium on Smart Structures and Materials:Electroactive Polymer Actuators and Devices,March 14-18,2004,San Diego,California.Bellingham:SPIE,5385:41-50.

共引文献8

同被引文献22

  • 1Dotson Z S. Material selection for the actuator design for a biomimetic rolling robot conducive to miniaturization [ D]. Rochester, NY : Rochester Institute of Technology, 2009.
  • 2Nguyen Q S, Heo S, Park H C, et al. Performance evaluation of an improved fish robot actuated by piezoceramic actuators [ J ]. Smart Materials and Structures, 2010, 19(3) : 1 -8.
  • 3Kornbluh R, Pelrine R, Prahlad I4. Eleetroactive polymers: an emerging technology for MEMS MEMS/MOEMS components and their applications [ C]//Siegfried W. Janson. Proceedings of SPIE MEMS/MOEMS Components and Their Applications, San Jose, CA : SPIE, 2004 : 13 - 27.
  • 4Brochu P, Pei Q B. Advances in dielectric elastomers for actuators and artificial muscles [ J ]. Macromolecular Rapid Communications, 2010, 31 ( 1 ) : 10 - 36.
  • 5Deepak T, Christopher D R, William M K, et al. Soft robotics: biological inspiration, state of the art, and future research [ J ]. Applied Bionics and Biomechanics, 2008, 5(3): 99- 117.
  • 6Pelrine R, Kornbluh R, Pei Q, et al. Dielectric elastomer artificial muscle actuators: toward biomimetic motion[ C ]//Yoseph Bar- Cohen. Proceeding of SPIE Smart Structures and Materials, San Diego, CA: SPIE, 2002:126 -137.
  • 7Kovacs G, Lochmatter P, Wissler M. An arm wrestling robot driven by dielectric elastomer actuators [ J ]. Smart Materials and Structures, 2007, 16(2): s306- s317.
  • 8Lochmatter P, Kovacs G. Design and characterization of an actively deformable shell structure composed of interlinked active hinge segments driven by soft dielectric EAPs[ J]. Sensors and Actuators A, 2008, 141(2) : 588 -597.
  • 9Jordi C, Michel S, Kovacs G, et al. Scaling of planar dielectric elastomer actuators in an agonist-antagonist configuration [ J ]. Sensors and Actuators A: Physical, 2010, 161(1 -2) : 182 -190.
  • 10Chuc N H, Park J K, Vuong N H L, et al. Multi-jointed robot finger driven by artificial muscle actuator[ C ]//IEEE International Conference on Robotics and Automation, 2009:587 -593.

引证文献1

二级引证文献5

;
使用帮助 返回顶部