期刊文献+

率相关饱和多孔介质动力响应的数值分析

NUMERICAL ANALYSIS ON DYNAMIC RESPONSE OF RATE-DEPENDENT SATURATED POROUS MEDIA
原文传递
导出
摘要 在基于混合物理论的多孔介质模型的基础上,将固体相视为弹粘塑性体,建立了饱和多孔介质的弹粘塑性模型。模型的基本思想是在无粘弹塑性本构关系中引入一时间参数,使固体骨架具备了粘性效应。利用Galerkin加权残值法推导得到了罚有限元格式,并采用Newmark预估校正法求解率相关饱和多孔介质的非线性有限元动力方程,此算法可以很好的求解非线性的饱和多孔介质弹粘塑性模型的动力响应。数值算例验证了模型的率相关性和时效特性,并分析了动力载荷作用下的固体骨架的位移场、应力场、塑性区分布以及孔隙液体的速度场和孔压的变化。 In the light of porous media model developed from mixtures theories, the solid skeleton was considered as elasto-viscoplastic material, and an elasto-viscoplastic model of saturated porous media was established. By adding a time parameter in inviscid elasto-plastic constitutive relation, the viscoplasticity was introduced into the solid skeleton. A penalty finite element formulation was attained by using Galerkin weighted residual method, and a Newmark predictor-corrector iterative scheme was designed to solve the nonlinear finite element system equations of rate-dependent porous media. The scheme is good at calculating the dynamic response of saturated elasto-viscoplastic porous media model. Through two numerical examples, the saturated elasto-viscoplastic porous media exhibited obvious rate-dependent property and time effect. Not only the displacements, solid stresses, plastic zone of solid skeleton, but also the flow velocity, pore pressure of interstitial fluid were presented and discussed.
出处 《工程力学》 EI CSCD 北大核心 2011年第9期137-142,共6页 Engineering Mechanics
基金 国家自然科学基金项目(10172098)
关键词 工程力学 多孔介质力学 数值分析 率相关:流固耦合 engineering mechanics porous media dynamics numerical analysis rate-dependent fluid-solid coupling
  • 相关文献

参考文献10

  • 1Loret B, Prevost J H. Dynamic strain-localization in fluid-saturated porous media [J]. Journal of Engineering Mechanics, ASCE, 1991, 117(4): 907-922.
  • 2陈少林,廖振鹏.两相介质动力学问题的研究进展[J].地震工程与工程振动,2002,22(2):1-8. 被引量:11
  • 3Biot M A. The theory of propagation of elastic waves in a fluid-saturated porous solid [J]. Journal of the Acougtieal Society of America, 1956, 28(2): 168-191.
  • 4Bowen R M. Incompressible porous media models by use of the theory of mixtures [J]. International Journal of Engineering Science, 1980, 18(9): 19-45.
  • 5Bowen R M. Compressible porous media models by use of the theory of mixtures [J]. International Journal of Engineering Science, 1982, 20(6): 697-735.
  • 6Prevost J H. Wave propagation in fluid-saturated porous media: An efficient finite element procedure [J]. Soil Dynamics and Earthquake Engineering, 1985, 4(4): 183-202.
  • 7Lai W M, Mow V C, Zhu W. Constitutive modeling of articular cartilage and biomacromolecular solutions [J]. Journal of Biomechanical Engineering, 1993, 115: 474- 480.
  • 8刘占芳,姜乃斌,李思平.饱和多孔介质一维瞬态波动问题的解析分析[J].工程力学,2006,23(7):19-24. 被引量:3
  • 9Duvaut G, Lions J L. Les Inequations en Mecanique et en Physique [M]. Paris, France: Dunod, 1972. (in French).
  • 10Owen D R J, Hinton E. Finite elements in plasticity: Theory and practice [M]. Swansea, UK: Pineridge Press Limited, 1980.

二级参考文献17

  • 1章根德.固体-流体混合物连续介质理论及其在工程上的应用[J].力学进展,1993,23(1):58-68. 被引量:14
  • 2苗天德,朱久江,丁伯阳.对饱和多孔介质波动问题中本构关系的探讨[J].力学学报,1995,27(5):536-543. 被引量:15
  • 3王立忠,陈云敏,吴世明,丁皓江.饱和弹性半空间在低频谐和集中力下的积分形式解[J].水利学报,1996,28(2):84-88. 被引量:41
  • 4Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid-Ⅰ.Low-frequency range[J].Journal of the Acoustics Society of America,1956,28:168~178.
  • 5R de Boer.Highlights in the historical development of the porous media theory:Toward a consistent macroscopic theory[J].Applied Mechanics Review,1996,49 (4):201~262.
  • 6Bowen R M.Incompressible porous media by use of the theory of mixtures[J].International Journal of Engineering Science,1980,18:19~45.
  • 7Bowen R M.Compressible porous media by use of the theory of mixtures[J].International Journal of Engineering Science,1982,20:19~45.
  • 8Prevost H.Wave propagation in fluid-saturated porous media:an efficient finite element procedure[J].Soil Dynamics and Earth Engng,1985,4:183~202
  • 9Lai W M,Mow V C,Zhu W.Constitutive modeling of articular cartilage and biomacromolecular solutions[J].Journal of Biomechanical Engineering,1993,115:474~480
  • 10Liu Zhanfang.Wave propagation in an incompressible fluid-saturated porous medium[D].Chongqing:Chongqing University,1992.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部