期刊文献+

放电参数对不同频率驱动的容性耦合氩等离子体影响的研究 被引量:2

Research on influence of discharge parameters on capacitively coupled Ar plasma driven by different frequencies
下载PDF
导出
摘要 研究了不同放电参数(功率、气压、频率)下容性耦合氩等离子体中电子温度以及电子密度的变化规律.电子温度和电子密度的测量由双探针诊断获得,而功率电极自偏压则由示波器测量得到.实验结果表明,不同驱动频率下,电子温度随功率上升明显降低直至达到稳定值,而随着驱动频率和气压的上升,电子与周围粒子碰撞加剧,从而导致电子温度降低.低功率时,电子密度呈现出类抛物线增长,高功率时,电子密度则线性增加.随着气压的上升,电子密度呈现先上升后略有下降的趋势.此外,当驱动频率由13.56MHz增加到60MHz时,观察到电子密度与驱动频率的成二次方的依赖关系.自偏压的测量结果表明,自偏压随着放电功率增大而增大,而当气压和驱动频率上升时,自偏压反而降低. The variations of electron temperature and electron density have been investigated in a capacitively coupled Ar plasma driven by different discharging parameters,such as power,pressure and frequency.The evolutions of electron temperature and electron density over a wide range of gas pressures are obtained by a dual probe while the bias voltage of powered electrode is measured by an oscilloscope.It is shown that,regardless of frequency,electron temperature gives a significant decrease until it comes to a stable value and as driving frequency and pressure go up,electron temperature also exhibits a decrease due to the continuous collision between electrons and around particles.Electron density presents an analogous parabolic increase at low discharge power while it increases linearly at high discharge power.From low pressure to high pressure,electron density increases at first and then it doesn't change a lot or even start to go down.Besides,a second order dependence of electron density on driving frequency is observed over the frequency range from 13.56MHz to 60MHz.Bias voltage goes up with discharge power while it decreases with pressures as well as frequencies.
出处 《苏州大学学报(自然科学版)》 CAS 2011年第3期46-53,共8页 Journal of Soochow University(Natural Science Edition)
基金 国家自然科学基金(10775103)
关键词 容性耦合等离子体 双探针诊断 电子温度 电子密度 自偏压 capacitively coupled plasma dual probe diagnostic electron temperature electron density self-bias voltage
  • 相关文献

参考文献27

  • 1Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[ M ]. 2nd edition. New York: Wiley, 2005 : 333.
  • 2Kitajinma T, Takeo Y, Petrovic Z L, et al. Functional separation of biasing and sustaining voltages in two-frequency capacitively coupled plasma [ J ]. Appl Phys Lett ,2000 ,77 : 489 - 491.
  • 3Zhu Ximing, Chen Wencong, Zhang Shu, et al. Electron density and ion energy dependence on driving frequency in capacitively coupled argon plasmas [ J ]. J Phys D : Appl Phys ,2007 ,40 :7019 - 7023.
  • 4Kim H C, Lee J K, Shon J W. Analytic model for a dual frequency capacitive discharge [ J]. Phys Plasmas, 2003,10:4545 - 4551.
  • 5Godyak V A, Piejak R B, Alexandrovich B M. Ion flux and ion power losses at the electrode sheaths in a symmetrical rf discharge [J]. J Appl Phys, 1991,69: 3455 -3460.
  • 6Howling A A, Dorier J L, Hollenstein C, et al. Frequency effects in silane plasmas for plasma enhanced chemical lvapor deposition[J]. J Vac Sci Technol A, 1992,10 : 1080 - 1085.
  • 7Koshiishi A, Tomoyasu M, Tahara Y, et al. Effect of increasing the upper frequency on dual frequency capacitive-coupled-plasma [ C ]//Proc. 19th Symposium on Dry Process, Tokyo, 1995:229.
  • 8Abdel-Fattah E, Sugai H. Electron heating mode transition observed in a very high frequency capacitive discharge [ J ]. Appl Phys Lett, 2003, 83 : 1533 - 1535.
  • 9Surendra M, Graves D B. Capacitively coupled glow discharges at frequencies above 13.56 MHz [ J]. Appl Phys Lett, 1991,59: 2091 - 2093.
  • 10Amanatides E, Mataras D. Frequency variation under constant power conditions in hydrogen radio frequency discharges [ J ]. J Appl Phys, 2001, 89:1556 - 1566.

二级参考文献30

共引文献50

同被引文献51

  • 1侯国付,郭群超,任慧志,张晓丹,薛俊明,赵颖,耿新华.电极结构对硅薄膜生长过程及材料特性的影响[J].Journal of Semiconductors,2005,26(7):1353-1358. 被引量:4
  • 2Lieberman M A,Lichtenberg A J.等离子体放电原理与材料处理[M].蒲以康,译.北京:科学出版社,2007:493-501.
  • 3Ren C S, Wang D Z, Zhang J et al. The Effect of External Cusp Magnetic Field on Ar ICP Characteristics [J]. Vacuum, 2008, 83 (2) :423-426.
  • 4U Kortshagen,N D Gibson, J E Lawler. On the E - H Mode Transition in RF Inductive Discharges [J]. Journal of Physics D-applied Physics, 1996,29(5): 1224-1236.
  • 5John H Keller. Inductive Plasmas for Plasma Processing [J], Plasma Sources Sci. Technol,1996,5 (2): 166-172.
  • 6Keller J H, Forster J C, Barnes M S. Novel Radio - Frequency Induction Plasma Processing Techniques [J]. Journal of Vacuum Science & Technology A,1993,11 (5): 2487-2491.
  • 7Carter J B, Holland J P, Peltzer E et al. Transformer Coupled Plasma Etch Technology for the Fabrication of Subhalf Micron Structures[J]. Journal of Vacuum Science & Technology A,1993, 11(4): 1301-1306.
  • 8Gabriel C T, Melaku Y. Gate Oxide Damage in a High Density Inductively Coupled Plasma [J]. Journal of Vacuum Science & Technology B, 1994,12 ( 1 ): 454-460.
  • 9H. M. Mott-Smith, Irving Langmuir. The Theory of Collectors in Gaseous Discharges [J]. Physical Review, 1926,28 ( 4 ) :727-763.
  • 10Spolaore M, Antoni V, Bagatin,et al. Automalic Langmuir Probe Measurement in a Magnetron Sputtering System[J]. Surface and Coatings Technology, 1999, 116-119: 1083-1088.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部