期刊文献+

基于外存的位置敏感搜索方法 被引量:1

Locality Sensitive Searching Method Based on Extend Memory
下载PDF
导出
摘要 位置敏感哈希在信息检索、目标识别和视频语义搜索等领域得到了广泛应用,与基于树的方法相比,它们虽然初步解决了高维检索问题,但这些基于主存的方法在实际应用中仍有较大的局限性。为解决大数据集快速检索问题,在E2LSH基础上提出了基于外存的位置敏感搜索方法,将数据集各点通过位置敏感哈希函数族进行映射并在外存建立索引文件,实验证明该方法在检索准确率几乎相当的情况下检索时间大大缩短。 Locality Sensitive Hashing is widely used in informational retrieval, object recognition and video visual search recently. Though they partly solved high dimension retrieval problem compared with tree-based method, their performance was limited for data structure stored in main memory. A locality sensitive search method based on extend memory is proposed on the basis of E2LSH, according to the experiments, the retrieval time of the method is decreased largely whereas the re- trieval accuracy is nearly at the same level with linear search.
作者 郭志刚 郭庆
出处 《现代电子技术》 2011年第18期71-73,76,共4页 Modern Electronics Technique
基金 国家自然科学基金资助项目(60872142)
关键词 高维检索 位置敏感哈希 外存 E2LSH high dimension retrievals locality sensitive Hashingl extend memory E2LSH
  • 相关文献

参考文献8

  • 1GIONOS A, INDYK P, MOTWANI R. Similarity search in high dimensions via hashing [C]. Edinburgh, Scotland: Proceedings of the 25th International Conference on Very Large Data Bases (VLDB), 1999.
  • 2INDYK P, MOTWANI R. Approximate nearest neighbor: towards removing the curse of dimensionality[C]. Dallas, Texas, USA: Proceedings of the Symposium on Theory of Computing(STOC), 1998.
  • 3ALEXANDR A, INDYK P. E2LSH 0. 1 user manual[EB/ OL]. [2010 - 08 - 20]. http://www, mit. edu/- andoni/LSH/.
  • 4DATAR M, IMMORLICA N, INDYK P, et al. Locality- sensitive hashing scheme based on P-stable distributions [C]. NewYork, USA: Symposium on Computational Oeometry(SoCG), 2004.
  • 5JEGOU H, DOUZE Matthijs, SCHM1D Cordelia. lmpro ving bag-of-features for large scale image search [J]. International Journal of Computer Vision, 2010, 87(3) : 316-336.
  • 6LIU Zhu, LIU Tao, GIBBON David, et al. Effective and scalable video copy detection[C]. Pennsylvania, USA : ACM SIGMM International Conference on Muhimedia Information Retrieval(MIR'10), 2010.
  • 7LIU Zhu, LIU Tao, SHAHRARY Behzad. AT&T Research at TRECVID 2009 content-based copy deteetionLCT]. Gaithersburg, MD: TRECVID Workshop at NIST, 2009.
  • 8LIANG Ying-yu, CAO Bin-bin, LI Jian-min, et al. THUIMG at TRECVID 2009 [ C ]. Gaithersburg, MD: TRECVID Workshop at NIST, 2009.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部