期刊文献+

基于粒子滤波参数估计的混沌保密通信系统 被引量:1

Chaotic secure communication based on parameter estimation of a particle filter
原文传递
导出
摘要 针对混沌参数调制保密通信系统中扩展卡尔曼滤波算法和无味卡尔曼滤波算法对混沌系统的状态和参数估计性能较差的问题,提出了用粒子滤波算法估计混沌系统参数的方法。在系统的发送端,通过待发送的二进制符号调制混沌系统的参数进而产生混沌信号。在接收端,粒子滤波器用接收到的混沌信号估计出相应的混沌系统参数,从而恢复出发送端的二进制符号。仿真结果表明,较扩展卡尔曼滤波和无味卡尔曼滤波,粒子滤波算法在估计混沌系统参数时具有更短的收敛时间和更小的估计误差,能更有效地实现混沌保密通信。 The extended Kalman filter algorithm and unscented Kalman filter algorithm have bad estimation performance of the chaotic system state and parameter in secure communication based on chaotic parameter modulation.To solve this problem,the particle filter algorithm was used to estimate the state and parameter.The binary symbols sent were used to modulate the parameters of chaotic systems in the transmitter.The corresponding parameters of chaotic systems were estimated through a particle filter with a received signal in the receiver.Simulations show that in comparison with the extended Kalman filter and unscented Kalman filter,the particle filter algorithm in chaotic parameter estimation has shorter convergence time and lower estimation error,and secure communication can be more effectively realized.
作者 李辉 冯四风
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第9期1-4,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(41074090) 河南省科技重点攻关项目(092102210360) 河南省教育厅自然科学研究计划项目(2009B510008) 河南理工大学博士基金项目(B2009-27)
关键词 混沌参数调制 粒子滤波 参数估计 混沌保密通信 chaotic parameter modulation particle filter parameter estimation chaotic secure communication
  • 相关文献

参考文献8

  • 1PECORA L M, CARROLL T L. Synchronization in chaotic systems[J]. Phys Rev Let, 1990, 64: 821-824.
  • 2王世元,冯久超.一种参数分多址的混沌通信方案[J].电子学报,2007,35(7):1251-1256. 被引量:4
  • 3ZHAI Tongyan, RUAN Huawei, YAZ EDWIN E. Performance evaluation of extended Kalman filter based state estimation for first order nonlinear dynamic systems [ C ]// The 42nd IEEE Conferece on Decision and Control, 2003, 2:1386-1391.
  • 4程水英.无味变换与无味卡尔曼滤波[J].计算机工程与应用,2008,44(24):25-35. 被引量:27
  • 5KANDEPU R, FOSS B, IMSLAND L. Applying the unscented Kalman filter for nonlinear state estimation [ J ]. Journal of Process Control, 2008, 18(7-8) :753-768.
  • 6郭晓松,李奕芃,郭君斌.粒子滤波算法及其应用研究[J].计算机工程与设计,2009,30(9):2264-2266. 被引量:19
  • 7Maoge Xu,Yaoliang Song.Bayesian sequential state estimation for MIMO-OFDM systems[J].Journal of Systems Engineering and Electronics,2010,21(1):148-153. 被引量:1
  • 8GORDON NJ, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J ]. IEE Proceedings on Radar and Signal Processing, 1993, 140(2) :107-113.

二级参考文献33

共引文献47

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部