期刊文献+

带预防性维修的冲击模型最优检测更换策略 被引量:7

Optimal inspection and replacement policy for a shock model with preventive repair
原文传递
导出
摘要 考虑带检测、预防性维修的冲击模型,在假设系统的故障不能修复如新的条件下,以降低系统运行成本为目标,以检测周期T、系统更换前故障次数N为联合决策变量,利用几何过程和更新过程理论建立了系统平均费用率C(T,N)的数学模型。最后,通过数值方法求得最优的检测更换策略。 Considering a shock model with inspection and preventive repair,and assuming that the repair of the system is not as good as new,the system average cost rate C(T,N) is obtained by using the geometric process and renewal process,where T is the time interval of inspections and N is the number of system failures before replacement.Finally,the optimal policy is derived by using the numerical method.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第9期122-126,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金项目(70871084) 教育部高校博士点专项研究基金项目(200806360001)
关键词 预防性维修 冲击模型 几何过程 平均费用率 更换策略 preventive repair shock model geometric process average cost rate replacement policy
  • 相关文献

参考文献10

  • 1LAI Mintasi, SHIH Wurong, TANG Kaiyao. Economic discrete replacement policy subject to increasing failure rate shock model[ J ]. International Journal of Advanced Manufacturing Technology, 2006, 27 ( 11-12 ) : 1242-1247.
  • 2LI Wenjian, HOANG Pham. An inspection-maintenance model for systems with multiple competing processes [ J ]. IEEE Transactions on Reliability, 2005, 54( 1 ) :318-327.
  • 3谭林,陈童,郭波.基于几何过程的单部件可修系统最优维修策略[J].系统工程,2008,26(6):88-92. 被引量:18
  • 4ZHANG Yuanlin. A geometric process repair-model with good-as-new preventive repair[J]. IEEE Transactions on Reliability, 2002, 51 ( 2 ) : 223-228.
  • 5WANG Guanjun, ZHANG Yuanlin. Optimal periodic preventive repair and replacement policy assuming geometric process repair [J ]. IEEE Transactions on Reliability, 2006, 55 ( 1 ) : 118-122.
  • 6WANG Guanjun, ZHANG Yuanlin. A bivariate mixed policy for a simple repairable system based on preventive repair and failure repair[J]. Applied Mathematical Modelling, 2009, 33 ( 8 ) :3354-3359.
  • 7LAM Y. A geometric process maintenance model with preventive repair[J ]. European Journal of Operational Research, 2007, 182(2) :806-819.
  • 8LAM Y. Geometric processes and replacement problem[J]. Acta Mathematics Appicatel Sinica, 1988, 4(4) :366-377.
  • 9LAM Y. A note on the optimal replacement problem [J]. Advances in Applied Probability, 1988, 20 (2) :479-482.
  • 10ROSS S M. Introduction to probability models [M]. 6th ed. San Diego, CA: Academic Press, 1997: 246-248.

二级参考文献15

  • 1Brown M, et al. Imperfect repair[J].Application Probability, 1983,20 : 851-859.
  • 2Nakagawa T. Sequential imperfect preventive maintenance policies[J]. IEEE Transaction Reliability, 1988,37:295-298.
  • 3Sheu S H, et al. A Bayesian approach to an adaptive preventive maintenance model[J]. Reliability Engineering and System Safety, 2001,71 : 33 -44.
  • 4Juang M G, Anderson G. A Bayesian approach on adaptive preventive maintenance problem[J].European Journal of Operational Research, 2004,155 : 455 -473.
  • 5Pham H, Wang H. Imperfect maintenance[J]. European Journal of Operational Research, 1996,94 : 425 -438.
  • 6Lam Y. A note on the optimal replacement problem [J]. Advances in Applied Probability, 1988, 20:479 -482.
  • 7Lam Y. A geometric process maintenance model[J]. Southeast Asian Bulletin of Mathematics, 2003, 27: 295-305.
  • 8Lam Y. A geometric process maintenance model with preventive repair [J].European Journal of Operational Research, 2007,182 :806- 819.
  • 9Zhang Y L, Wang G J. A deteriorating cold standby repairable system with priority in use[J]. European Journal of Operational Research, 2007, 183:278 -295.
  • 10Zhang Y L, Wang G J. A bivariate optimal replacement policy for a multistate repairable system [J]. Reliability Engineering and System Safety, 2007, 92:535-542.

共引文献17

同被引文献76

  • 1单晓明,宋云峰,黄金泉,仇小杰,鲁峰.基于神经网络和模糊逻辑的航空发动机状态监视[J].航空动力学报,2009,24(10):2356-2361. 被引量:20
  • 2左洪福,张海军,戎翔.基于比例风险模型的航空发动机视情维修决策[J].航空动力学报,2006,21(4):716-721. 被引量:50
  • 3陈光.国外军事电子装备维护保障测试技术综述[J].国外电子测量技术,2007,26(2):1-5. 被引量:14
  • 4李泽慧,白建明,孔新兵.冲击模型:进展与应用[J].数学进展,2007,36(4):385-398. 被引量:20
  • 5董纪震,罗鸿烈,王庆瑞,等.合成纤维工艺学[M].北京:纺织工业出版社,1987:73.
  • 6M T LAI, W SHIH, K Y TANG. Economic discrete replacement policy subject to increasing failure rate shock model[J].International Journal of Advanced Manufacturing Technology, 2006, 27(11/12): 1242-1247.
  • 7J Y CHEN, Z H LI. An extended extreme shock maintenance model for a deteriorating system [J]. Reliability Engineering and System Safety, 2008, 93(8): 1123-1129.
  • 8Guaniun WANG, Yuanlin ZHANG, Optimal periodic preven tive repair and replacement policy assuming geometric process repair[J]. IEEE Transactions on Reliability, 200(3, 55 ( 1 ) :118-122.
  • 9Guanjun WANG, Yuanlin ZHANG. A bivariate mixed policy for a simple repairable system based on preventive repair and failure repair[J]. Applied Mathematical Modeling, 2009, 33 (8): 3354- 3359.
  • 10Alle A,Papageorgiou L G,Pinto J M.A mathematical programming approach for cyclic production and cleaning scheduling of multistage continuous plants[J].Computers and Chemical Engineering,2004,28(1-2):3-15.

引证文献7

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部