期刊文献+

基于机器学习的视频指纹识别 被引量:1

Video-based fingerprint verification using machine learning
原文传递
导出
摘要 把视频应用于指纹识别,定义指纹视频的内部相似性(inside similarity,SI)和一对待匹配指纹视频的外部相似性(outside similarity,SO),计算两个视频的匹配分数来表示它们的相似性,大大提高了自动指纹识别系统的识别率。为寻求更好的识别效果,提出把一次匹配结果作为一个样本,将SI和SO作为一个样本的两个特征的新思路,把判断一次匹配是同源匹配还是异源匹配问题转化为对具有二维特征(SI,SO)的样本进行分类的问题。在样本集上应用常见的机器学习算法,对每次的匹配结果进行分类。在两组样本集上的实验结果为应用机器学习算法得到的最低错误率分别为0.170 4%和0.110 6%,而使用阈值得到的最低错误率分别为0.222 9%和0.1700%。结果表明,相比使用阈值来区分指纹同、异源的方法,应用机器学习算法不仅提高了识别率,而且省去了计算两个视频的匹配分数时对参数和阈值的复杂选取过程。 Fingerprint video was utilized for fingerprint verification.Inside similarity(SI) and outside similarity(SO) were defined and used to calculate the final matching score of two fingerprint videos.A new idea was proposed to acquire the optimized performance of fingerprint verification.A matching result with two features SI and SO was viewed as a sample.The task of verifying whether two fingerprint videos are genuine matching or impostor matching,was converted to a classification task of samples with two-dimensional features(SI,SO).In addition,machine learning algorithms were adopted to classify every matching result.Experimental results showed that the minimum error rates calculated through the method of machine learning algorithms were 0.1704% and 0.1106% while those calculated through the method of using the threshold were 0.2229% and 0.1700%.The accuracy of video-based fingerprint verification was significantly improved by using the machine learning algorithm compared to the results by using the threshold.And the current method avoided the complex process of selecting parameters and thresholds.
出处 《山东大学学报(工学版)》 CAS 北大核心 2011年第4期29-33,共5页 Journal of Shandong University(Engineering Science)
基金 山东省自然科学基金资助项目(Z2008G05) 济南市科技局高等院所自主创新项目(201004004) 山东大学自主创新基金自然科学类专项基金资助项目2009TS035)
关键词 指纹识别 视频 机器学习 fingerprint verification video machine learning
  • 相关文献

参考文献20

  • 1JA1N A K. Biometric recognition: "Q &A" [J].Nature, 2007, 449:38-40.
  • 2LEE H C, GAENSSLEN R E. Advances in fingerprint technology[M]. New York, USA: Elsevier, 1991.
  • 3ZHU E, YIN J, HU C, et al. A systematic method for fingerprint ridge orientation estimation and image segmentation[J]. Pattern Recognition, 2006, 39 : 1452-1472.
  • 4HONG L, WAN Y, JAIN A K. Fingerprint image enhancement : algorithms and performance valuation [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1998, 20(8) : 777-789.
  • 5CHIKKERUR S, CARTWRIGHT A N, GOVINDARAJU V. Fingerprint enhancement using sift analysis [ J]. Pattern Recognition, 2007, 40( 1 ) : 198-211.
  • 6ROSS A, DASS S, JAIN A K. A deformable model for fingerprint matching [J]. Pattern Recognition, 2005, 38 ( 1 ) : 95-103.
  • 7HONG L, JAIN A K, PANKANTI S. Can multibiomettics improve performance? [ C]//Proceedings of AutolD 1999. Morristown, USA: IEEE, 1999: 59-64.
  • 8MARCIALIS G L, ROLI F. Fingerprint verification by fusion of optical and capacitive sensors [ J ]. Pattern Recognition Letters, 2004, 25 ( 11 ) : 1315-1322.
  • 9NANNI L, LUMINIA. Local binary patterns for a hybrid fingerprint matcher [ J ]. Pattern Recognition, 2008, 41 ( 11 ) :3461-3466.
  • 10PARBHAKAR S, JAIN A K. Decision-level fusion in fingerprint verification[J]. Pattern Recognition, 2002, 35 (4) :861-874.

共引文献1

同被引文献29

  • 1王长宇,宋尚玲,孙丰荣,梅良模.手指背关节皮纹识别方法[J].山东大学学报(工学版),2006,36(1):37-40. 被引量:2
  • 2阮秋琦.数字图像处理学[M].北京:电子工业出版社,2007.
  • 3LIU Zhi, YIN Yilong, WANG Hongjun. Finger vein recognition with manifold learning [J]. Journal of Network and Computer Applications, 2010( 33 ) :275-282.
  • 4HASHIMOTO J. Finger vein authentication technology and its feature [C]//Symposium on VSLI Circuits Digest of Technical Papers. Hawaii : VSLI, 2006 : 5-8.
  • 5Naoto Miura, Akio Nagasaka, Takafumi Miyataka. Feature extraction of finger-vein patterns based on repeat line tracking and its application to personal identification [J]. Machine Vision and Application, 2004, 15 (4) :194-203.
  • 6YANG Jinfeng, LI Xu. Efficient finger vein localization and recognition [ C ]//International Conference on Pattern Recognition. Turkey, Istanbul :ICPC,2010 : 1148-1151.
  • 7JAIN A K, CHEN YI, DEMIRKUS M. High-resolution fingerprint matching using level 3 features [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007, 29(1) :15-27.
  • 8YANG Jinfeng, YANG Jinli, SHI Yihua. Finger-vein segment based on multi-channel even-symmetric Gabor filters [C]//2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. [ S. L ] : the IEEE Press, 2009, 4:500-503.
  • 9Nurhafizah Mahri, Shahrel Azmin Sundi, Suandi, etal. Finger vein recognition algorithm using phase only correlation [C]//Emerging Techniques and Challenges for Hand-Based Biometrics. Turkey, Istanbul : [s. n. ],2010:1-6.
  • 10MULYONO D, HORNG Shi Jinn. A study of finger vein biometric for personal identification [ C ]//International Symposium on Biometrics and Security Technologies. Pakistan, Islamabad: [ s. n. ], 2008 : 1-8.

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部