期刊文献+

基于视觉原理的密度聚类算法的改进 被引量:1

Enhanced visual-based density clustering algorithm
原文传递
导出
摘要 结合基于视觉原理的密度聚类算法对初始化参数不敏感、能发现任意形状的聚类、能够找出最优聚类及一趟聚类算法快速高效的特点,研究可以处理混合属性的高效聚类算法.首先简单改进基于视觉原理的密度聚类算法,使之可以处理含分类属性的数据,进而提出一种两阶段聚类算法。第一阶段使用一趟聚类算法对数据集进行初始划分,第二阶段利用基于视觉原理的密度聚类算法归并初始划分而得到最终聚类。在真实数据集和人造数据集上的实验结果表明,提出的两阶段聚类算法是有效可行的。 The visual-based density clustering algorithm which is insensitive to initialized parameters,identify the data with any shape and can find the optimal cluster.The one-pass clustering algorithm is efficient and fast.Based on their features research was done on a clustering algorithm which can process the data with mixed attributes.At first,the visual-based density clustering algorithm was slightly improved,which enabled it to process data with categorical attributes.Then,the two-stage clustering algorithm was put forward.In the first stage,the single pass clustering algorithm was used to group the data as an original partition.In the second stage,the improved visual-based density clustering algorithm was used to merge the original partition so that the clusters were finally obtained.Experimental results of both actual and synthetic datasets show that the presented clustering algorithm is effective and practicable.
出处 《山东大学学报(工学版)》 CAS 北大核心 2011年第4期85-90,共6页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61070061) 广东省自然科学基金资助项目(9151026005000002) 广东省高层次人才资助项目
关键词 一趟聚类算法 视觉原理聚类 任意形状簇 single pass clustering algorithm visual theory clustering arbitrary shape cluster
  • 相关文献

参考文献14

二级参考文献76

  • 1沈红斌,王士同,吴小俊.离群模糊核聚类算法[J].软件学报,2004,15(7):1021-1029. 被引量:37
  • 2[1]Jain A K, Dubes R C. Algorithms for Clustering Data. Englewood Cliffs, New Jersey: Prentice-Hall, 1988
  • 3[2]Arabie P, Hubert L J, de Soete G eds. Clustering and Classification. River Edge, NJ: World Scientific Publishing, 1996
  • 4[3]Duda R D, Hart P E. Pattern Classification and Scene Analysis. New York: Wiley, 1974
  • 5[4]Dubes R, Jain A K. Clustering techniques: The user's dilemma. Pattern Recognition, 1976, 8(2):247-260
  • 6[5]Marr D. Vision, A Computational Investigation into the Human Representation. San Francisco: W H Freeman, 1982
  • 7[6]Witkin A P. Scale space filtering. In: Proc the Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany(Los Altos, California: The Conferences), 1983. 1019-1022
  • 8[7]Dangman J G. An information-theoretic view of analog representation in striate cortex. In: Computational Neuroscience. Cambridge, Mass; London: MIT Press, 1990. 403-423
  • 9[8]Swindale N V. The development of topography in the visual cortex: A review of models. Network: Computation in Neural Systems, 1996, 7(2):161-247
  • 10[9]Koenderink J J. The structure of images. Biological Cybernetics, 1984, 50(5):363-370

共引文献57

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部