期刊文献+

一种基于Bayesian网络的网页推荐算法 被引量:1

An algorithm based on the Bayesian network for web page recommendation
原文传递
导出
摘要 为改善用户的Web页面访问行为、提高访问效率,设计了一种基于贝叶斯网络的网页推荐模型及推荐算法。通过收集和分析服务器中的描述文件和日志文件,利用Bayesian网络分析页面间的依赖关系,构建了基于贝叶斯网络的网页推荐模型并产生推荐集。通过在Microsoft公司提供的网络日志数据集上做的实验,可以获得超过80%的准确率和覆盖率。理论分析和实验结果表明:算法能够在线实时向用户做出个性化的推荐,与已有的推荐算法相比,算法能较快地给出推荐集,并且可以获得更高的准确率和覆盖率。 A model based on the Bayesian network and corresponding algorithm for web page recommendation were presented to improve users' behavior on browsing web pages and enhance visiting efficiency.The model was constructed by collecting and analyzing description files and log files in the servers and using the Bayesian network to analyze the dependence among the web pages.Then the model was built and the recommendation set was generated.By conducting experiments on the network log data sets provided by Microsoft Company,the precision and coverage obtained were both higher than 80%.The results of theoretical analysis and experiments indicated that the algorithm could make personalized recommendation for users in real time online.Compared with other existing algorithms,this algorithm could give the recommendation set more quickly with higher precision and coverage.
出处 《山东大学学报(工学版)》 CAS 北大核心 2011年第4期137-142,共6页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金面上项目(61073193) 安徽省自然科学基金资助项目(11040606M152) 安徽省高校省级自然科学研究项目(KJ2011ZD06)
关键词 数据挖掘 个性化推荐 协同过滤 贝叶斯网络 Data mining personalized recommendation collaborative filtering Bayesian network
  • 相关文献

参考文献2

二级参考文献46

  • 1曹锐,李宏光,李昊阳.一类混杂系统Petri网模型的优化算法的研究[J].微计算机信息,2005,21(1):27-28. 被引量:27
  • 2Lepar V, Shenoy P P. A comparison of Lauritzen and Spiegelhalter, Hugin and Shafer and Shenoy architectures for computing marginals of probability distributions. Uncertainty in Artificial Intelligence.1998,328-327.
  • 3Andcrs L. Madsen, Finn V. Jensen: Lazy propagation: A junction tree inference algorithm based on lazy evaluation.Artificial Intelligence 113 (1999) 203-245
  • 4Peal J. Fusion, propagation, and structuring in belief networks[J]. Artificial Intelligence 1986.29(3): 241288.
  • 5Lauritzen S L, Spiegelhalter D J. Local Computations with Probabilities on Graphical Structures and their Applications to Expert Systems [J]. Journal of the Royal Statistical Society,1988,50(1570):157-224.
  • 6Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 7Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 8Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 9Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.
  • 10Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72.

共引文献425

同被引文献19

  • 1Christidis K, Mentzas G. A topic-based recommender sys- tem for electronic marketplace platforms[J]. Expert Sys- tems with Applications,2013,40(11) : 4370-4379.
  • 2Yu P S. Data mining and personalization technologies[C]// Proceedings of the 6th International Conference on Data- base Systems for Advanced Applications, 1999. IEEE, 1999:6-13.
  • 3Balabanovic M, Shoham Y. Fab: content-based, collaborative recommendation[J]. Communications of the ACM, 1997, 40(3) : 66-72.
  • 4Huang Zan, Zeng D, Chen H. A comparison of collabora- tive-filtering recommendation algorithms for e-commerce [J]. IEEE Intelligent Systems, Z007, 22(5):68-78.
  • 5Chaiyaratana N, Zalzala A M S. Recent developments in ev- olutionary and genetic algorithms: theory and applications [C]//Second International Conference On Genetic Algo- rithms in Engineering Systems~ Innovations and Applica- tions, 1997 : 270-277.
  • 6Dahrowski M, Acton T. The performance of recommender systems in online shopping: a user-centric study[J]. Expert Systems with Applications, 2013,40 (14) : 5551- 5562.
  • 7Kim H T, Lee J H, Ahn C W. A recommender system based on interactive evolutionary computation with data grouping [J].. Procedia Computer Science, 2011, 3: 611-616.
  • 8Cho Y B,Cho Y H,Kim S H. Mining changes in customer buying behavior for collaborative recomrnendations[J]. Expert Systems with Applications, 2005, 28 (2): 359-369.
  • 9Mary S P, Baburaj E. Constraint informative rules for ge-netic algorithm-based web page recommendation system [J].Journal of Computer Science, 2013, 9 (11): 1589-1601.
  • 10Hwang C S,Su Y C,Tseng K C. Using genetic algorithms for personalized recommendation [J]. Lecture Notes in Computer Science, 2010,6422 : 104-112.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部