期刊文献+

基于地基宽带辐射观测资料的云检测算法改进 被引量:1

Modification of Cloud-Screening Method Using Ground-Based Broadband Shortwave Irradiance Measurements
下载PDF
导出
摘要 利用地表太阳总辐射和散射辐射对Long and Ackerman(2000)的云检测算法进行了改进,提高了云判别的准确率。首先采用比值概率密度峰值法,初步选出晴天时刻。然后根据晴天时刻的地表太阳总辐射和太阳天顶角余弦值,拟合得到该日晴天总辐射近似表达式。在此基础上,计算各时刻实际观测值与用该拟合式估计的总辐射的比值,并再次利用比值概率密度峰值法,判断该时刻的天空状况。最后利用全天空成像仪观测资料和站点天气记录结果检验算法,结果表明,在天顶角小于75°条件下,本算法判断准确率平均达90.9%。改进的云检测算法减少了因水汽柱总量、气溶胶浓度和系统测量偏差的日变化及天顶角变化造成的误差。应用该检测算法,得到了香河和太湖两地云日发生频率并分析了云地表辐射强迫季节变化特征。两地云出现频率和云地表短波辐射强迫均夏季最大,春秋次之,冬季最小,太湖站云出现频率的季节变化幅度不及香河。香河云地表短波辐射强迫年平均为-39.5 W.m-2,春夏秋冬季节平均分别为-25.9 W.m-2、-70.9 W.m-2、-51.1 W.m-2、-10.8 W.m-2。太湖云地表短波辐射强迫年平均为-66.2 W.m-2,春夏秋冬季节平均分别为-84.6 W.m-2、-89.1 W.m-2、-50.2 W.m-2、-44.1 W.m-2。 A modified automatic cloud-screening method is developed using 1-min measurement of sur[ace down- welling shortwave global and diffuse irradiance. Clear skies are detected firstly by peak frequency density of ratio (PFDR) method. Then the detected clear-sky irradianee measurements are used to fit the expected clear-sky irradi- ance as the function of the cosine of the solar zenith angle by the least squares fitting method. Afterwards, the PFDR method is applied to the ratio of observed total shortwave irradiance to the predicted values for the cloud-free sky condition with the fitting expression. The clear sky detection method is verified using Total Sky Imager data and observer reports. The result shows that the average accuracy is 90. 9% for the solar zenith angle less than 75°. For the modified cloud-screening method, the uncertainties due to both diurnal changes in such variables as column water vapor, aerosol loading, systematic pyranometer offsets, and solar zenith variables are diminished. Cloud occurring frequency and cloud radiative forcing (CRF) on downward shortwave irradianee at ground are calculated based on the clear sky detection results for Xianghe and Taihtu The cloud occurring frequency and the CRF show a distinct sea- sonal variation with maximum in summer and minimum in winter. The annual average of CRF is --39. 5 W · m-2 in Xianghe and --66.2 W·m-2 in Taihu. The seasonal average of CRF in Xianghe is --25. 9 W·m-2 in spring, --70. 9 W· m-2 in summer, --51.1 W·m-2 in autumn, and --10. 8 W· m-2 in winter. And the seasonal average of CRFinTaihuis --84.6 W·m 2, 89.1W. m-2, --50.2 W·m-2, and--44.1W·m-2, respectively, from spring to winter.
出处 《气候与环境研究》 CSCD 北大核心 2011年第5期609-619,共11页 Climatic and Environmental Research
基金 国家自然科学基金项目40875084 40775009 国家重点基础研究发展计划项目2006CB403702 中国科学院知识创新工程重要方向项目KZCX2-YW-QN201
关键词 辐射 云检测 概率密度峰值 云辐射强迫 irradiance, cloud detection, peak frequency density, cloud radiative forcing
  • 相关文献

参考文献8

  • 1Hartmann D L, Ockert Bell M E, Michelsen M L. 1992. The effect of cloud type on earth's energy balance: Global analysis[J]. J. Climate, 5 (11): 1281-1304.
  • 2Conant W C, Ramanathan V, Valero F P J, et al. 1997. An examination of the clear-sky solar absorption over the Central E- quatorial Pacific: Observations versus models [J]. J. Climate, 10 (8): 1874- 1884.
  • 3Potter G L, Ellsaesser H W, Maccracken M C, et al. 1981. Climate change and cloud feedback= The possible radiative effects of latitudinal redistribution [J]. J. Atmos. Sci., 38 (3): 489 - 493.
  • 4Ramanathan V, Cess R D, Harrison E F, et al. 1989. Cloud-radiative forcing and climate: Results from the earth radiation budget experiment [J]. Science, 243 (4887): 57-63.
  • 5Peters M E, Bretherton C S. 2005. A simplified model of the Walker circulation with an interactive ocean mixed layer and cloud radiative feedbacks [J]. J- Climate, 18 (20): 4216 - 4234.
  • 6Platt C M R. 1989. The role of cloud microphysics in high-cloud feedback effects on climate change[J]. Nature, a41 (6241) : 428 - 429.
  • 7霍娟,吕达仁.三维辐射传输模式分析非均匀云对天空辐射场影响[J].大气科学,2009,33(1):168-178. 被引量:6
  • 8Cess R D, Dutton E G, Deluisi J J, et al. 1991. Determining surface solar absorption from broad-band satellite measurements for clear skies--Comparison with surface measurements [J]. J. Climate, 4 (2): 236-247.

二级参考文献16

  • 1邱金桓,陈洪滨,王普才,吕达仁.大气遥感研究展望[J].大气科学,2005,29(1):131-136. 被引量:25
  • 2张凤.AGCM中云的不均匀性作用的初步研究[J].气候与环境研究,2005,10(3):574-587. 被引量:5
  • 3霍娟,吕达仁,王越.全天空云识别阈值法的数值模拟初步研究[J].自然科学进展,2006,16(4):480-484. 被引量:15
  • 4刘玉芝,石广玉,赵剑琦.一维辐射对流模式对云辐射强迫的数值模拟研究[J].大气科学,2007,31(3):486-494. 被引量:21
  • 5Segal M, Davis J. 1992. The impact of deep cumulus reflection on the ground-level global irradiance [J]. Journal of Applied Meteorology, 31:217-222.
  • 6Dai A, Karl T R, Sun B, et al. 2006. Recent trends in cloudiness over the United States: A tale of monitoring inadequacies [J]. Bulletin of the American Meteorological Society, 87 (5) : 597 - 606.
  • 7Estupinan J G, Raman S, Crescent G H, et al. 1996. Effects of clouds and haze on UV-B radiation[J].Journal of Geophysical Research, 101 (11): 16807- 16816.
  • 8Evans K F. 1998. The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer [J].Journal of the Atmospheric Sciences, 55: 429- 446.
  • 9Houghton J T, Ding Y, Griggs D J, et al. 2001. Climate Change 2001 : The Scientific Basis [M]. Cambridge: Cambridge University Press, 944 pp.
  • 10胡丽琴.2005.云的水平非均匀性对云特征参数反演结果的影响[D].中国气象科学研究院博士学位论文,110.Hu L.2005.

共引文献5

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部