期刊文献+

中心引力优化算法 被引量:2

Central Force Optimization
下载PDF
导出
摘要 中心引力最优化是一种以物理运动学理论为基础的新的确定性群体搜索优化算法。在重力场中,物体的移动是由物体间的受力和加速度来制定,并把这种物体间的作用运用于粒子运动中。在中心引力优化算法中,通过加速度的更新来实现目标函数适应值的更新。基于这种思想,给出一种改进中心引力优化算法,并用几个典型的例子对算法进行了验证,结果表明算法是有效的。 Central Force Optimization (CFO) is a new deterministic multi -dimensional optimization algorithm based on the metaphor of gravitational kinematics. The probes^ositions and accelerations equations are determined using the analogy of particle motion in a gravitational field. In CFO, through the acceleration updates to realize the objective function fitness updates and simulation in physics universal gravitation choose to find the optimal solution of the optimal solution. Introduced is the new optimization algorithm emphatically, and the result of this algorithm is analyzed. Based on this idea, presented is a kind of improved gravity center, and the optimization algorithm for several typical examples of the algorithm is validated, and the results indicate that the algorithm is effective.
出处 《渤海大学学报(自然科学版)》 CAS 2011年第3期203-206,共4页 Journal of Bohai University:Natural Science Edition
基金 辽宁省自然科学基金资助项目(No:20102003)
关键词 中心引力最优化 万有引力定律 粒子 最优解 Central Force Optimization law of universal gravitation particles optimal solution
  • 相关文献

参考文献5

  • 1韩万林,张幼蒂.遗传算法的改进[J].中国矿业大学学报,2000,29(1):102-105. 被引量:41
  • 2吴诗娟,李旭伟.蚁群算法理论及应用研究[J].硅谷,2009,2(3). 被引量:2
  • 3纪晨,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社,2009.
  • 4R. A. Formato, Central force optimization: a new metaheuristic with applications in applied electromagnetics[ J ]. Progress In Electromagnetics Resarch, PIER,2007,77:425 - 491.
  • 5P. S. Shelokar et al./Particle swarm and ant colony algorithms hybridized for improved continuous optimization [ J ]. Applied Mathematics and Computation 2007,188 : 129 - 142.

二级参考文献5

共引文献41

同被引文献17

  • 1王玫,朱云龙,何小贤.群体智能研究综述[J].计算机工程,2005,31(22):194-196. 被引量:40
  • 2Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies [ C]. In Proceedings of 1 st European Conferenc on Artificial Life, Pans, France, Elsevier Publishing, 1991 : 134 - 142.
  • 3Dorigo M, Caro G D, GAMBARDELLA L M. Ant algorithms for discrete optimization [ J ]. Applied Intelligence ,2003,18:105 -111.
  • 4Kennedy J, Eberhart R C. Particle swarm optimization [ C ]. Proc of the IEEE International Conference on Neural Networks. Piscataway, NJ. IEEE Service Center, 1995 : 1942 - 1948.
  • 5Yamilledel V, Ganesh K V, Salman M, et al. Particle swarm optimization[ J ]. Basic Concepts, Variants and Applications in Power Systems. IEEE Transactions On Evolutionary Computation,2008,12 (2) : 171 - 195.
  • 6Storn R,Price K V. Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces, Tamil Nadu Tech Report TR - 95 - 012 [ R ]. Institute of Company Secretaries of India, Chennal, 1995.
  • 7Formato R. A, Central force optimization : a new metaheuristic with applications in applied electromagnetics [ J]. Progress In Electroma - gnetics Research,2007,77:425 - 491.
  • 8Sheiokar P. S, Siarry P, Javaraman V K, et al. Particle swarm and antolony algorithm shybridized for improved continuous optimazati - on [ J ]. Applied mathematics and Computation ,2007,188( 1 ) :129 -142.
  • 9王培崇,钱旭,王月,虎晓红.差分进化计算研究综述[J].计算机工程与应用,2009,45(28):13-16. 被引量:19
  • 10喻寿益,邝溯琼.Fuzzy adaptive genetic algorithm based on auto-regulating fuzzy rules[J].Journal of Central South University,2010,17(1):123-128. 被引量:6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部