摘要
中心引力最优化是一种以物理运动学理论为基础的新的确定性群体搜索优化算法。在重力场中,物体的移动是由物体间的受力和加速度来制定,并把这种物体间的作用运用于粒子运动中。在中心引力优化算法中,通过加速度的更新来实现目标函数适应值的更新。基于这种思想,给出一种改进中心引力优化算法,并用几个典型的例子对算法进行了验证,结果表明算法是有效的。
Central Force Optimization (CFO) is a new deterministic multi -dimensional optimization algorithm based on the metaphor of gravitational kinematics. The probes^ositions and accelerations equations are determined using the analogy of particle motion in a gravitational field. In CFO, through the acceleration updates to realize the objective function fitness updates and simulation in physics universal gravitation choose to find the optimal solution of the optimal solution. Introduced is the new optimization algorithm emphatically, and the result of this algorithm is analyzed. Based on this idea, presented is a kind of improved gravity center, and the optimization algorithm for several typical examples of the algorithm is validated, and the results indicate that the algorithm is effective.
出处
《渤海大学学报(自然科学版)》
CAS
2011年第3期203-206,共4页
Journal of Bohai University:Natural Science Edition
基金
辽宁省自然科学基金资助项目(No:20102003)
关键词
中心引力最优化
万有引力定律
粒子
最优解
Central Force Optimization
law of universal gravitation
particles
optimal solution