期刊文献+

一阶中立型差分方程的振动性

Oscillation of first-order neutral difference equation
下载PDF
导出
摘要 研究了一阶中立型差分方程Δ[x(n)-px(n-)τ]+qx(n-)σ=0的振动性,其中p∈(0,1),q,τ,σ是正常数,利用适当的不等式和特征方程,建立了方程解的新振动准则. The oscillation of the first order neutral difference equation △[x(n)-px(n-τ)]+qx(n-σ)=0 is studied in this paper, where P∈(0,1),q,τ,σ, r, a are positive constants. The sufficient conditions for oscillation of the equation is obtained by suitable inequality and characteristic equation.
作者 陈春华
出处 《周口师范学院学报》 CAS 2011年第5期19-20,87,共3页 Journal of Zhoukou Normal University
基金 周口师范学院青年基金资助项目(No.ZKNUQN201027A)
关键词 差分方程 中立型 振动性 difference equation neutral oscillation
  • 相关文献

参考文献6

二级参考文献22

  • 1杨逢建,雷友发.具有可变时滞的非线性非自治差分方程的振动性及其应用[J].系统科学与数学,2004,24(3):346-353. 被引量:8
  • 2李巧銮,刘召爽,白景山.一阶中立型差分方程的振动性[J].河北师范大学学报(自然科学版),2004,28(6):569-570. 被引量:5
  • 3[1]Ladas G. Oscillation of difference equations with postive and negative coefficients. Rocry mountain J. of Math. 1990, 20(4):1051-1061.
  • 4[2]Chuanxi G, Ladas G. Oscillation of difference equation with positive and negative coefficients. Mathematiche (catania). 1989, 44:293-309.
  • 5[3]Chen M P, Zhang B G. Oscillation and comparison theorems of difference equations with positive and negative coefficients. Bulletin of the Institute of Math. academia sinia. 1994, 22(40):295-300.
  • 6[4]Zhang B G, Wang H. The existence of oscillatory and nonoscillatory sollutions of neutral difference equations. Chinese J. Math. 1996, 24(4):377-393.
  • 7[5]Chen M P, Lalli B S, Yu J S. Oscillation in neutral delay difference equations with variable coefficients. Computers Math. Applic. 1995, 29(3):5-11.
  • 8[6]Yu J S, Wang Z C. Asymptotic behavior and oscillation in delay difference equations. Func. Ekvac. 1992, 37:241-248.
  • 9[7]Agarwal R P. Difference Equations and Inequalities: Theory, Methods, and Applications. Marcel Dekker, New York. 1994.
  • 10[8]Gyri I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications. Claredon Press, Oxford. 1991.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部