期刊文献+

删失相依数据下的分位数核估计的Bahadur型表达

Bahadur Type Representation for the Kernel Quantile Estimation of Quantile Funtion with Censored Dependent Data
下载PDF
导出
摘要 该文考虑了在删失相依数据下分位数函数的核估计.在适当条件下,建立了该估计的弱和强Bahadur型表达形式.作为它的应用,导出了该估计的渐近正态性.通过模拟给出了该估计在有限样本下的表现. This paper considered the kerne estimation of the quantile function wtih censored dependent data. Under appropriate assumptions, the paper established the weak and strong Bahadur-type representations for the kernel estimation, derivd the asymptotic normality of the estimation and provided the representation of the estimation in firute samples via simulation
出处 《杭州师范大学学报(自然科学版)》 CAS 2011年第5期385-392,共8页 Journal of Hangzhou Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11001070) 浙江省教育厅科研基金项目(Y200906404)
关键词 渐近正态性 Bahadur型表达 删失数据 Α-混合序列 分位数函数. asymptotic normality Bahadur-type representation censored data α-mixing quantile function.
  • 相关文献

参考文献12

  • 1Csorgo M. Quantile processes with statistical applications[C]//CBMS-NSF Regional Conference Series in Applied Mathematics, No. 42, Philadelphia, 1983.
  • 2Cheng Kuangfu. On almost sure representation for quantiles of the product limit estimator with applications[J], Sankhya, 1984,46:426- 443.
  • 3Ould-said E, Sadki O. Strong approximation of quantile function for strong mixing censored processes[J]. Comm Statist Theory Methods, 2005,34 : 1449-1459.
  • 4Padgett W J. A kernel-type estimator of a quantile function from right-censored data[J]. J Amer Statist Association, 1986,81:215-222.
  • 5Lio Y L, Padgett W J, Yu K F. On the asymptotic properties of a kernel-type quantile estimator from censored samples[J]. J Statist Plann Inference, 1986,14:169 -177.
  • 6Lio Y L, Padgett W J. Asymptotically optimal bandwidth for a smooth nonparametric cluantile estimator under censoring[J]. J. Nonparametr. Stat, 1992 ( 1 ) : 219-229.
  • 7Doukhan P. Mixing: Properties and Examples[M]. New York: Springer verlag,1994.
  • 8Xiang Xiaojing. Bahadur representation of the kernel quantile estimator under random censorship[J]. J. Multivariate Anal, 1995,54: 193- 209.
  • 9Cai Zongwu. Asymptotic properties of Kaplan Meier estimator for censored dependent data[J]. Statist Probab Lett,1998,37:381- 389.
  • 10Fakoor V, Jomhoori S, Azarnoosh H. Asymptotic expansion for ISE of kernel density estimators under censored dependent model[J]. Statist Probab Lett,2009,79:1809 -1817.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部