期刊文献+

某类恰含两个交点的本原不可幂定号有向图的第一类广义基

The First Type Generalized Base of a Primitive Non-powerful Signed Digraph with Two Common Points
下载PDF
导出
摘要 利用图论的相关方法,讨论了一类恰含有两个交点的n阶本原不可幂定号有向图,通过分析图形特点,综合运用SSSD途径对、Frobenius指数和异圈对的相关理论,进而得出这类本原不可幂定号有向图的第一类广义基,即Local基。 By using graph theory, the primitive non-powerful signed digraph with two common points was discussed. The local base of this special primitive non-powerful signed digraph was obtained by analyzing the characteristics of SSSD walks, Frobenius and distinguished cycle pair.
机构地区 中北大学理学院
出处 《新乡学院学报》 2011年第4期294-297,共4页 Journal of Xinxiang University
基金 山西省自然科学基金资助项目(2008011009)
关键词 本原图 定号有向图 SSSD途径对 Local基 primitive digraph signed digraph SSSD walks local base
  • 相关文献

参考文献6

  • 1GAO Y B,SHAO Y L,SHEN J.Bounds on the Local Bases of Primitive Non-powerful Nearly Reducible Sign Patterns[].Linear Multil Algebra.2009
  • 2L.H.You,J.Y.Shao,H.Y.Shan.Bounds on the bases of irreducible generalized sign pattern ma-trices[].Linear Algebra and Its Applications.2007
  • 3Shen J,Neufeld S.Localexponents of pri mitive digraphs[].Linear Algebra and Its Applications.1998
  • 4Hongping Ma.Bounds on the local bases of primitive, non-powerful,minimally strong signed digraphs[].Linear Algebra and Its Applications.2009
  • 5Li Z,Hall F,Eschenbach C.On the period and base of a sign pattern matrix[].Linear Algebra and Its Applications.1994
  • 6Shao Jia Yu.On the exponent of a primitive digraph[].Linear Algebra and Its Applications.1985

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部