期刊文献+

基于特征选择的垃圾短信过滤研究 被引量:1

A Feature-selection-based Study on Junk-SMS-filtering
下载PDF
导出
摘要 根据短信文本长度有限的特点,分别从句法、句式、语义等不同角度选取特征属性,然后设定属性权重,最后用平衡权重与大量实验总结得出的阈值相比较,实现短信文本分类。此方法计算量小,提高了分类速度和准确率,同时为实现用户过滤的个性化要求提供了方便的途径。 With the characteristics of the text length limitation of messages, characteristic properties are set from the perspective of syntax, grammar, sermntic and syntactic structure, Then property weight is set and finally, balance weight and threshold drawn from a large number of the experimental eondusions are compared to classify SMS. This method needs less calculation and accelerates classification, with more satisfactoly accuracy and easier way to filter junk SMS.
作者 杨凤霞
出处 《沧州师范学院学报》 2011年第3期117-119,共3页 Journal of Cangzhou Normal University
基金 2010年度河北省科技支撑计划项目"手机垃圾短信语义识别及分类" 编号:No.10213581
关键词 垃圾短信 特征选择 短信过滤 junk SMS feature selection SMS-filtering
  • 相关文献

参考文献3

二级参考文献22

  • 1Lewis D. D.. An evaluation of phrasal and clustered representalions on a text categorization task. In: Proceedings of SIGIR'92,the 15st ACM International Conference on Research and Development in Information Retrieval, Copenhagen, Denmark,1992, 37-50.
  • 2Sebastiani F,. Machine learning in automated text categorization. ACM Computing Surveys, 2002, 34(1): 1-47.
  • 3Lewis D.. Naive bayes at forty: The independence assumption in information retrieval. In: Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, 1998,4-15.
  • 4Salton G.. Automatic Text Processing: The Transformation,Analysis, and Retrieval of Information by Computer. Reading,MA: Addison Wesley, 1989.
  • 5Mitchell T. M.. Machine Learning. New York: McCraw Hill,1996.
  • 6Joachims T.. Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of the 10th European Conference on Machine Learning,Chemnitz, Germany, 1998, 137-142.
  • 7Yang Y. , Liu X.. A Re-examination of text categorization methods. In: Proceedings of SIGIR'99, the 22nd ACM International Conference on Research and Development in Information Retrieval, Berkeley, CA, 1999, 42-49.
  • 8樊兴华.因果推理和文本分类.清华大学博士后出站报告,2004.
  • 9Larkey L. S.. Automatic essay grading using text categorization techniques.. In: Proceedings of SIGIR'98, the 21st ACM International Conference on Research and Development in Information Retrieval, Melbourne, Australia, 1998, 90-95.
  • 10Dumais S. T. , Platt J. , Hecherman D. , Sahami M.. Inductive learning algorithms and representation for text categorization.In: Proceedings of CIKM'98, the 7th ACM International Conference on Information and Knowledge Management, Bethesda, MD, 1998, 148-155.

共引文献95

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部