期刊文献+

Hopf bifurcation in general Brusselator system with diffusion

Hopf bifurcation in general Brusselator system with diffusion
下载PDF
导出
摘要 The general Brusselator system is considered under homogeneous Neumann boundary conditions.The existence results of the Hopf bifurcation to the ordinary differential equation (ODE) and partial differential equation (PDE) models are obtained.By the center manifold theory and the normal form method,the bifurcation direction and stability of periodic solutions are established.Moreover,some numerical simulations are shown to support the analytical results.At the same time,the positive steady-state solutions and spatially inhomogeneous periodic solutions are graphically shown to supplement the analytical results. The general Brusselator system is considered under homogeneous Neumann boundary conditions.The existence results of the Hopf bifurcation to the ordinary differential equation (ODE) and partial differential equation (PDE) models are obtained.By the center manifold theory and the normal form method,the bifurcation direction and stability of periodic solutions are established.Moreover,some numerical simulations are shown to support the analytical results.At the same time,the positive steady-state solutions and spatially inhomogeneous periodic solutions are graphically shown to supplement the analytical results.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第9期1177-1186,共10页 应用数学和力学(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 10971124 and 11001160) the Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2011JQ1015 and 2009JQ100) the Doctor Start-up Research Fund of Shaanxi University of Science and Technology (No. BJ10-17)
关键词 general Brusselator system Hopf bifurcation DIFFUSION stability general Brusselator system Hopf bifurcation diffusion stability
  • 相关文献

参考文献2

二级参考文献14

  • 1Erneux T, Reiss E. Brusselator isolas[ J ]. SIAM Journal on Applied Mathematics, 1983, 43(6 ) : 1240- 1246.
  • 2Nicolis G.Pattems of spatio-temporal organization in chemical and biochemical kinetics[ J]. SIAMAMS Proc, 1974,8(1) : 33-58.
  • 3Prigogene I, Lefever R. Symmetry breaking instabilities in dissipative systems Ⅱ [ J]. The Journal of Chemical Physics, 1958,48(4) : 1055-1700.
  • 4Brown K J, Davidson F A. Global bifurcation in the Brusselator system[ J ]. Nonlinear Analysis, 1995, 24(12) : 1713-1725.
  • 5Callahan T K, Knobloch E. Pattern formation in three-dimensional reaction-diffusion systems[J]. Physica D, 1999,132(3) : 339-362.
  • 6Rabinowitz P. Some global results for nonlinear eigenvalue problems [ J ]. Journal of Functional Analysis, 1971,7(3) : 487-513.
  • 7Peng R, Wang M X. Pattern formation in the Brusselator system[ J]. Journal of Mathematical Analysis and Applications,2005,309(1) : 151-166.
  • 8Yi F Q, Wei J J, Shi J P. Diffusion-driven instability and bifurcation in the Lengyel-Epstein system [J]. Nonlinear Analysis ,2008,9(8) : 1038-1051.
  • 9Wang M X. Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion[J]. Mathematical Biosciences ,2008,212(2) : 149-150.
  • 10陆启韶.常微分方程的定性分析和分叉[M].北京:北京航空航天大学出版社,1989.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部