期刊文献+

基于联合对角化的远场相干信号波达方向估计 被引量:3

Direction of Arrival Estimation of Far-field Coherent Signals Using Joint Diagonalization
下载PDF
导出
摘要 提出一种基于联合对角化的远场相干信号波达方向估计算法。利用阵元接收数据构造高阶累积量矩阵,通过矩阵联合对角化得到阵列广义流形矩阵的估计。利用阵列流形矩阵的矩阵特性及最小多项式的性质,消除联合对角化带来的顺序不确定性,得到波达方向的估计。该方法无需进行角度搜索,且能处理不同相干群内部分波达方向相同的情形。计算机仿真实验验证了算法的有效性。 Anew algorithm for direction of arrival (DOA) of coherent signals using joint diagonalizafion was proposed. A set of higher-order cumulant matrices were first devised, the generalized array manifold matrix was then estimated using the technology of joint diagonalization. Finally, permutation uncertainty inherent in the estimation of the generalized array manifold matrix was eliminated and DOAs were estimated, based on the matrix structure of the array manifold matrix and properties of minimum polynomial of matrix. The proposed algorithm does not need angle searching, and can be applied to the cases when soma DOAs in different coherent group are the same. The effectiveness of the proposed algorithm is verified by computer simulation results.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2011年第4期60-64,共5页 Journal of National University of Defense Technology
基金 国家自然科学基金项目(60902092)
关键词 联合对角化 相干 波达方向 高阶累积量 joint diagonalization coherent direction of arrival high-order cumulant
  • 相关文献

参考文献10

  • 1Shan T J, Wax M, Kailath T. On Spatial Smoothing for Direction- of-arrival Estimation of Coherent Signals [ J ]. IEEE Trans. Aconst., Speech, Signal Process, 1985, ASSP-33(4) : 806- 811.
  • 2Pillai S U, Kwon B H. Forward/bacdward Spetial Smoothing Techniques for Coherent Signal Identification[J]. IEEE Trans. Acoust., Speech, Signal Process, 1989, 37(1) : 8-15.
  • 3Yuen N, Fviedlander B. DOA Estimation in Multipath: An Approach Using Fourth-order Cumulants[J]. IEEE Trans. Signal Process, 1997, 45(5): 1253 - 1265.
  • 4Gonen E, Mendel J M, Dogan J M. Applications of Cumulants to Array Processing, Part IV: Direction Finding in Coherent Signal Case[J]. IEEE Trans. Signal Process, 1997, 45(9): 2265- 2276.
  • 5Han F M, Zhang X D. An ESPRIT-like Algarithm for Coherent DOA Estimation[J]. IEEE Antennas Wireless Propag. Lett., 2005, 4(1) : 443-446.
  • 6Qi C Y, Wang Y L, Han Y. Spatial Difference Smoothing for DOA Estimation of Coherent Signals[J]. IEEE Signal Process. Lett., 2005, 12(11): 800-802.
  • 7Ye Z F,Zhang Y F, DOA Estimation for Non-Gaussian Signals Using Fourth-order Cumulants[J]. IET Microw. Antennas Propag., 2009, 3 (7): 1069- 1078.
  • 8Zhang Y F, et al. An Efficient DOA Estimation Method in Multipath Environment[J]. Signal Processing, 2010, 90 : 707-713.
  • 9Li X L, Zhang X D. Nonorthogonal Joint Diagonalization Free of Degenerate Solution[J]. IEEE Trans. Signal Process., 2007, 55 (5) : 1803- 1814.
  • 10刘全.改进的累量域波达方向矩阵法[J].国防科技大学学报,2001,23(5):89-92. 被引量:2

二级参考文献3

共引文献1

同被引文献18

  • 1Harry L, Van T. Optimal Array Processing [M]. Wiley--Inter Sci ence, 2002.
  • 2刘祚.智能天线中相干信号的波达方向估计[D].上海:上海师范大学,2009.
  • 3Ning J, Farina D. Covariance and time-scale methods for blind separation of delayed sources [ J ]. IEEE Transaction on Biomedical Engineering, 2011, 58 (3): 550-556.
  • 4Zhou Y, Feng D Z, Liu J Q. A novel algorithm for two-dimensional frequency estimation [ J ]. Signal Processing, 2007, 87 ( 1 ) : 1 - 2.
  • 5Yeredor A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation [ J ]. IEEE Transactions on Signal Processing, 2002, 50(7): 1545-1553.
  • 6Ziehe A, Laskov P, Nohel G. A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation [ J ]. The Journal of Machine Learning Research, 2004, 5:777 -800.
  • 7Vollgaf R, Obermayer K. Quadratic optimization for simultaneous matrix diagonalization[J]. IEEE Transactions on Signal Processing, 2006, 54(9) : 3270 -3278.
  • 8Yeredor A. On using exact joint diagonalization for noniterative approximate joint diagonalization [ J ]. IEEE Signal Processing Letters, 2005,12 (9) : 645 -648.
  • 9Souloumiac A. Nonorthogonal joint diagonalization by combining givens and hyperbolic rotations[ J]. IEEE Transactions on Signal Processing, 2009, 57 (6) : 2222 -2231.
  • 10Vander A J. Joint diagonalization via subspace fitting techniques [ C ]. 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, USA, May 7 - 11, 2001.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部