期刊文献+

广义t分布的EM估计 被引量:1

EM estimation of generalized t distributions
下载PDF
导出
摘要 在广义t分布的自由度参数未知时,自由度参数的最大似然估计不存在,而矩估计和最大似然估计不相合。通过建立广义t分布和正态混合分布之间的关系,能够在不完全数据框架下讨论自由度参数的最大似然估计。给出了广义t分布的Bayes分层表达,证明了参数的共轭先验和两类隐变量的数学期望。讨论并分析了广义t分布的EM类算法及估计的标准差的计算。通过Monte Carlo模拟,分析了广义t分布的参数估计问题。 Under the assumption that the degree of freedom parameter (df) of the generalized t distributions is unknown, the maximum likelihood estimator (MLE) of df does not exist, the moment estimator is inconsistent with MLE. The generalized t distributions are an infinite mixture of Normal distribution from incomplete data perspectives. The hierarchical bayesian models of the generalized t distributions were discussed, and the expectations of two latent variables were obtained. The EM-type algorithm of the generalized t distributions were discussed on the estimated standard errors, a simulation study was conducted to assess the performanee of proposed methods. Simulation results confirm the problems of the degree of freedom parameter in the case of small samples and larger samples.
作者 王会战
出处 《陕西理工学院学报(自然科学版)》 2011年第3期51-55,共5页 Journal of Shananxi University of Technology:Natural Science Edition
基金 陕西理工学院科研基金资助项目(SLGKY10-06)
关键词 广义t分布 参数估计 无限混合正态分布 EM算法 标准差 generalized t distribution parameter estimates infinite mixture of normal distribution EM algorithm standard errors
  • 相关文献

参考文献11

  • 1Zellner A. Bayesian and Non-Bayesian Analysis of the Regression Model with Multivariate Student-T Error Terms[ J]. Journal of the American Statistical Association, 1976,71 (354) :400-405.
  • 2Geweke J. Bayesian Treatment of the Independent Student-T Linear Model[ J ]. Journal of Applied Econometrics, 1993,8 (S1) :S19-S40.
  • 3Breusch T S, Robertson J C,Welsh A H. The Emperor's New Clothes: A Critique of the Multivariate T Regression Model [ J ]. Statistica Neerlandica, 1997,51 (3) :269-286.
  • 4Azzalini A, Capitanio A. Distributions Generated by Perturbation of Symmetry with Emphasis on a Multivariate Skew T-Distribution [ J ]. Journal of the Royal Statistical Society : Series B ( Statistical Methodology) ,2003,65 (2) : 367 -389.
  • 5Meng X L, Rubin D B. Maximum Likelihood Estimation Via the ECM Algorithm: A General Framework [ J ]. Biometrika, 1993,80(2) :267-278.
  • 6Liu C ,Rubin D B. The ECME Algorithm: A Simple Extension of Em and Ecm with Faster Monotone Convergence[J]. Biometrika,1994,81 (4) :633-648.
  • 7Liu C H, Rubin, D B, Wu Y N. Parameter Expansion to Accelerate EM : The PX-EM Algorithm [ J ]. Biometfika, 1998,85 (4) :755-770.
  • 8Oakes D. Direct Calculation of the Information Matrix Via the EM Algorithm [ J ]. Journal of the Royal Statistical Society. Series B ( Statistical Methodology), 1999,61 ( 2 ) : 479 -482.
  • 9王会战.一类非线性周期时间序列模型[J].计算机应用,2010,30(5):1394-1397. 被引量:3
  • 10王会战.MPARMA模型EM算法及观测信息矩阵的计算[J].陕西理工学院学报(自然科学版),2010,26(1):79-85. 被引量:4

二级参考文献17

  • 1ANDERSON P L,KAVALIERIS L,MEERSCHAERT M M.Innovations algorithm asymptetics for periodically stationary time series with heavy tails[J].Journal of Multivariate Analysis,2008,99(1):94-116.
  • 2TESFAYE Y G,MEERSCHAERT M M,ANDERSON P L.Identification of periodic autoregressive moving average models and their application to the modeling of river flows[J].Water Resources Research,2006,42(1):1-11.
  • 3WANG HONGJUN,TIAN ZHENG.Heteroscodestic Mixture Transition Distribution (HMTD) model[J].Journal of Applied Mathematics and Computing,2008,28(1/2):207-224.
  • 4SHAO Q.Mixture periodic antexegressive time series models[J].Statistics & Probability Letters,2006,76(6):609-618.
  • 5MCLACHLAN G J,PEEL D.Finite mixture models[M].New York:Wiley,2000.
  • 6FRUHWIRTH-SCHNATTER S.Finite mixture and Markov switching models[M].Berlin:Springer-Verlag,2006.
  • 7DEMPSTER A P,LAIRD N M,RUBIN D B.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society:Series B,1977,39(1):1-38.
  • 8LOUIS T A.Finding the observed information matrix when using the EM algorithm[J].Journal of the Royal Statistical Society:Series B,1982,44(2):226-233.
  • 9BIBI A,FRANCQ C.Consistent and asymptotically normal estimators for cyclically time-dependent linear models[J].Annals of the Institute of Statistical Mathematics,2003,55(1):41-68.
  • 10FAN J,YAO Q.Nonlinear time series:Nonparametric and parametric methods[M].2nd ed.Berlin:Springer-Verlag,2005.

共引文献5

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部