摘要
设A=(aij)∈Cn×n,若存在α∈(0,1),使i∈N,|aii|≥Riα(A)Si1-α(A),则称A为α-链对角占优矩阵。利用这一概念给出了α-链严格对角占优矩阵的一个充要条件,从而间接地得到了判别非奇异H-矩阵的必要条件,改进和推广了已有的结论。最后用数值例子说明了所给结果的优越性。
Abstract .. Let A=(aij)∈C^n×n , if there exists a∈(0,1) which can make Ai∈N,|AII|≥Ri^a(A)Si^1-a(A) be right for Ai ∈ N= { 1,2,… n}, then A is called an α- chain diagonally dominant matrix. It gave an equivalent condition for chain strictly diagonally dominant matrices, and obtains a necessary condition for a matrix to be a nonsingular H-- matrix indirectly. The result obtained improves the known corresponding results. At last, some numerical examples are given for illustrating advantages of the result.
出处
《辽宁石油化工大学学报》
CAS
2011年第3期81-83,94,共4页
Journal of Liaoning Petrochemical University
基金
辽宁省科学技术基金资助项目(001084)
辽宁石油化工大学重点学科建设资助项目(J200874)