期刊文献+

沿旋转曲面单参数Marcinkiewicz积分算子的L^p有界性 被引量:2

L^p Boundedness of a Class of One-Paramter Marcinkiewicz Integral Operators Associated with Surfaces of Revolution
下载PDF
导出
摘要 对沿旋转曲面的单参数Marcinkiewicz积分算子进行了研究,在积分核满足较弱的尺寸条件下建立了该算子的Lp((2γ/((3-2α)γ-2))<p<(2γ/((2α-1)γ+2)))有界性. On the basis of Littlewood-Paley theory and Fourier transforms, this paper is devoted to study of a class of Marcinkiewicz integral operators associated with Surfaces of Revolution on R^n. Some rather weak size condi-tions, which imply the L^P-boundedness of these operators for some 2γ/(3-2α)γ-2〈2γ/(2α-1)γ+2are given.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2011年第4期362-365,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(10961003)资助项目
关键词 MARCINKIEWICZ积分 旋转曲面 粗糙核 LITTLEWOOD-PALEY理论 Fourier变换估计 Marcinkiewicz integral surface of revolution rough kernel littlewood-paley theory Fouriertrans form estimate
  • 相关文献

参考文献8

二级参考文献40

共引文献107

同被引文献23

  • 1胡国恩,张启慧.极大奇异积分算子的一个BLO估计(英文)[J].数学进展,2007,36(1):101-107. 被引量:3
  • 2Guoen Hu.L p Boundedness for the Multilinear Singular Integral Operator[J]. Integral Equations and Operator Theory . 2005 (3)
  • 3Chen Jiecheng,Fan Dashan,Ying Yiming.Rough Marcinkiewicz integrals with L (log-+ L)-2kernels on product space. Advances in Mathematics . 2001
  • 4Adams R A.Sobolev Spaces. . 1975
  • 5Sun,Y.,Zhang,Z.A Note on the Existence and Boundedness of Singular Integrals. Journal of Mathematical Analysis and Applications . 2002
  • 6Coifman R R,Rochberg R.Another characterization of BMO. Proceedings of the American Mathematical Society . 1980
  • 7Calderon AP,Zygmund A.On singular integrals. American Bee Journal . 1956
  • 8Carlos Perez.Endpoint estimates for commutators of singular integral operators. Journal of Functional Analysis . 1995
  • 9Calderon A P,Zygmund A. On the existence of certain singular integrals[J].{H}ACTA MATHEMATICA,1952,(1):85-139.
  • 10Calderon A P,Zygmund A. On singular integrals[J].{H}AMERICAN JOURNAL OF MATHEMATICS,1956,(2):289-309.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部