摘要
提出了一种新的认知诊断自适应测验选题策略和题库按项目所包含的属性模式分层方法.与传统方法相比,该方法不仅提高了测量精度而且可以提升选题速度.
A new item selection strategy of computerized adaptive testing for cognitive diagnosis, and the method of partition of the item pool according to the attribute pattern in the item, called as pattern of pattern-stratified method are proposed. The new strategy improves the measurement accuracy and enhances speed of item selection, compared with a traditional method of Xu et al's algorithm based on Shannon's Entropy.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2011年第4期418-421,共4页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(30860084
60263005
31160203
31100756)
教育部人文社科项目(09YJCXLX012
10YJCXLX049)
江西省研究生创新专项基金资助项目
关键词
认知诊断自适应测验
选题策略
按模式分层
computerized adaptive testing for cognitive diagnosis
item selection strategy
pattern-stratified