期刊文献+

套代数上的非线性三元Lie导子

Nonliner Triple Lie Derivations on Nest Algebras
下载PDF
导出
摘要 证明了套代数上的每个非线性的三元Lie导子,是一个可加导子与一个到其中心上的映射的和,而该映射将三元积映成0。 Let A be a associative algebra and define Lie product [a,b] =ab-ba for a,b ∈ A. A nonlinear map Ф: A→A is called a nonliner Lie triple derivation, if it satisfys Ф([[a,b],c])=[[Ф(a),b],c]+[[a,Ф (b)],c]+[[a,b],Ф(c)]. Let H be a Hilbert space, and N be a nest on H, with N≠{{0},H}. Let Ф.T (N)→T(N) be a nonlinear Lie triple derivation on T(N), then Ф(x)=d(x)+τ(x)I for x∈ T(N), where d is an additive derivation of T(N) and τ T(N)→F vanishing at Lie triple products [[a,b],c].
出处 《青岛大学学报(自然科学版)》 CAS 2011年第3期9-13,共5页 Journal of Qingdao University(Natural Science Edition)
基金 国家自然科学基金(10971117)
关键词 套代数 三元Lie导子 可加导子 nest algebra Lie triple derivation additive derivation.
  • 相关文献

参考文献11

  • 1Alaminos J, Extremera J, Villena A R, Bresar M. Characterizing homomorphisms and derivations on C^*-algebras [J]. Proc Roy Soc, 2007, 137: 1-7.
  • 2Alaminos J, Mathieu M, Villena A R. Symmetric amenability and Lie derivations [JJ. Math Proc Cambridge Philos Soc,2004, 137: 433-439.
  • 3Lu F, Jing W. Characterizations of Lie derivations of B(X) [J]. Linear Algebra Appl, 2010, 432:89 -99.
  • 4Cheng W. Lie derivations of triangular algebras [J]. Linear and Multilinear Algebra, 2003, 51 : 299 - 310.
  • 5Jacobson N, Rickart C R. Jordan homomorphisms of rings [J]. Trans Amer Math Soc, 1950, 69: 479- 502.
  • 6Lister W G. A structure theory of Lie triple systems [J]. Trans Amer Math Soc, 1952, 72.. 217 -242.
  • 7Lu F. Lie triple derivations on nest algebras [J], Math Machr. 2007, 208:882 -887.
  • 8Miers C R. Lie triple derivations of von Neumann algebras [J]. Proc Amer Math Soc, 1978, 71:57 -61.
  • 9Miers C R. Lie-triple homomorphisms into von Neumann algebras [J]. Proc Amer Math Soc, 1976, 58: 169- 172.
  • 10Davision K R. Nest Algebras [M]. Essex: Longman Scientific and Technical, 1988.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部