期刊文献+

具有反射壁的随机环境中二重随机游动的Kronecker强数大定律

A Strong Law of Large Numbers of Kronecker for Random Walks of Order 2 with a Reflecting Barrier in a Random Environment
下载PDF
导出
摘要 文章研究了平稳遍历条件下具有反射壁的随机环境中的二重随机游动,首先对随机环境中的单边二重随机游动的常返性准则做了讨论,然后通过转移概率的Markov性,在随机环境下讨论了随机推移算子的极限行为,最后给出在几乎处处的随机环境下,相应的Kronecker强大数定律。 This paper discusses a class of random walks of Order 2 with a reflecting barrier in a random environment under the condition of stationary and ergodic. Firstly, we studies a recurrence criterion by means of transition probability of Markov. Then we further study the limit properties of the permutation operator and derive a strong law of largr numbers of Kronecker about this random walks in i. i. d. finally.
出处 《青岛大学学报(自然科学版)》 CAS 2011年第3期14-18,共5页 Journal of Qingdao University(Natural Science Edition)
基金 甘肃省教育厅科研基金(0804-10)
关键词 平稳遍历条件 随机环境 单边二重随机游动 强大数定律 stationary and ergodic condition random environment random walks order 2 strong law of large numbers
  • 相关文献

参考文献10

  • 1Kozlov, M. V. , Random walk in a one dimensional random medium [J]. Theory Prob. Appl. , 1973, 18:387 -388.
  • 2Solomon F. Random walk in a random environment [J]. Ann. Prob. , 1975, (3): 1 -31.
  • 3Karlin S, Taylor H . M. , A First Course in Stochastic Processes[M]. New York: Academic Press, 1975.
  • 4Szase D, Toth B. Peresist random walks in one-dimensional random environment [J]. Journal of Statistical Physics, 1984, 37(1): 28-38.
  • 5Alili S. Persistent random walks in stationary environment [J]. Journal of Statistical Physics, 1999, 94(3) : 469 - 494.
  • 6[苏]N.N基赫曼,A.B.斯科罗霍德.随机过程论:第一卷[M].石北源,译.北京:科学出版社,1986.
  • 7Fayolle G, Malyshev V, Menshikov M. V. ,Topics in the Constructive Theory of Countable Markov Chains [M]. Cambridge: Cambridge Univ. Press, 1995.
  • 8荣民希,胡迪鹤,孔凡秋.随机环境中单边二重生灭链的常返性[J].武汉大学学报(理学版),2007,53(1):17-20. 被引量:8
  • 9[日]伊藤清.随即过程[M].刘璋温,译.北京:人民邮电出版社,2010.
  • 10王伟刚,胡迪鹤.随机环境下单边二重随机游动[J].工程数学学报,2010,27(1):92-98. 被引量:5

二级参考文献17

  • 1Cogburn R. Markov chains in random rnvironments: the case of Markovian environments[J]. Annals of Probability, 1980, 8:908-916.
  • 2Cogburn R. The ergodic theory of Markov chains in random environments[J]. Z Wahrach Verw Gebiete, 1984, 66:109-128.
  • 3Solomon F. Random walks in a random environment[J]. Annals of Probability, 1975, 8(1): 1-31.
  • 4Kozlov S M. The method of averaging and walks in inhomogenious environments[J]. Russian Math Surveys, 1985, 40(2): 73-145.
  • 5Szasz D, Toth B. Peresist random walks in one-deminsional random environment[J]. Journal of Statistical Physics, 1984, 37(1): 27-38.
  • 6Alili S. Persistent random walks in stationary environment[J]. Journal of Statistical Physics, 1999, 94(3): 469-494.
  • 7Athreya K B, Karlin S. On branching processes with random environments: Ⅰ extinction probabilities[J]. Ann Math Statist, 1971, 42:1499-1520.
  • 8Athreya K B, Karlin S. On branching processes with random environments: Ⅰ extinction probabilities[J]. Annals of Mathematical Statistics, 1971, 42(6): 1843-1858.
  • 9Guivarc'h Y Raugi A. Frontiere de Furstunberg properieties de constraction et theoremes de convergence[J]. Z Wahrach Verw Gebiete, 1987, 69:187-242.
  • 10Kozlov M V.Random Walk in a One Dimensional Random Medium[J].Theory Prob Appl,1973,18:387-388.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部