期刊文献+

几种修正拟牛顿法的比较 被引量:9

Comparison of Some Modified Quasi-Newton Methods
下载PDF
导出
摘要 拟牛顿法是所有利用一阶导数求解无约束优化问题的方法中最有效的一类计算方法,如何提高实际计算中的运算效率,如何使得对非凸目标函数保持局部超线性收敛的同时具有全局收敛性,是对拟牛顿法进行研究的两个方向.对近年来相关文献的几种修正拟牛顿法进行分析比较,并提出和分析了一个修正BFGS拟牛顿法的收敛性. For unconstrained optimization problems,quasi-Newton methods are a class of utilizing,first derivative,the most effective approach.How to improve the computing efficiency of the actual calculation,and how to obtain global convergence and local super linear convergence for non-convex objective function are contents of quasi-Newton research.This paper compares some modified quasi-Newton methods in the recent literature,proposes a modified BFGS quasi-Newton method and analyzes its global convergence.
作者 黄海 林穗华
出处 《广西民族师范学院学报》 2011年第3期8-11,共4页
基金 广西民族师范学院科研项目(200909)
关键词 无约束优化 拟牛顿法 全局收敛性 unconstrained optimization quasi-Newton method global convergence
  • 相关文献

参考文献3

二级参考文献19

  • 1赵云彬,易正俊.伪Newton-δ族的导出和全局收敛性[J].数值计算与计算机应用,1995,16(1):53-62. 被引量:17
  • 2赵云彬,段虞荣.伪Newton-δ族算法对一般目标函数的收敛性[J].数值计算与计算机应用,1996,17(1):36-37. 被引量:12
  • 3Barzilai J and Borwein J M. Two-point step size gradient methods. IMA Journal of Numerical Analysis, 1988, 8: 141-148.
  • 4Raydan M. On the Barzilai and Borwein choice of steplength for the gradient method. IMA Jouvanl of Numerical Analysis, 1993, 13: 321-326.
  • 5Raydan M and Svaiter B F. Relaxed steepest descent and Cauchy-Barzilai-Borwein method. Computational Optimization and Applications, 2002, 21: 155-167.
  • 6Yuhong Dai, Jinyun Yuan, and Ya-XiangYuan: Modified two-point stepsize gradient methods for unconstrained optimization. Computational Optimization and Applications, 2002, 22: 103-109.
  • 7Raydan M. The Barzilai and Borwein gradient method for large scale unconstrained minimization problems. SIAM J. Optim., 1997, 7(1): 26-33.
  • 8塞亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,1997..
  • 9Dixon L W C. Conjugate directions without line searches. Journal of the Institute of Mthematics and Its Applications, 1973, 11: 317-328.
  • 10Grippo L, Lampariello F and Lucidi S. A class of nonmonotone stability methods in unconstrained optimization. Numevische Mathematik, 1991, 62: 779-805.

共引文献66

同被引文献54

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部