期刊文献+

基于B/S模式的贝叶斯网络平台设计和应用

Design and Development of Bayesian Network Platform Based on B/S Structure
下载PDF
导出
摘要 研究了B/S模式下贝叶斯网络平台的设计和应用,详细描述了贝叶斯网络平台的功能设计、贝叶斯网络平台的开发框架、贝叶斯网络图形和贝叶斯网络数字信息的构建以及贝叶斯网络推理算法。由于采用B/S模式进行平台构建,该平台在使用方便性、使用成本和维护成本等方面都具有巨大的优势。最后利用该贝叶斯网络平台对CarStarts实例进行了网络建模和网络推理。经验证,该平台完全满足贝叶斯网络模型实际应用,能为贝叶斯网络模型的远程构建和推理提供良好的支持。 Aiming at design and development of Bayesian network platform under the B/S mode, it describes the function design, development framework, network visualization, construction of the digital information and the inference algorithms of Bayesian network in detail. Based on the B/S model, this platform has obvious advantages at the aspects of convenience and cost. It makes the simulation study of the Asia case to confirme the effectiveness of the platform modeling and inference. The results show that the platform completely satisfies the requests of Bayesian network applications and provides strong support for online modeling and inference.
作者 赵鹏飞
出处 《中国制造业信息化(学术版)》 2011年第9期15-19,共5页
关键词 贝叶斯网络平台 网络建模 网络推理 Bayesian Network Platform Network Modeling Network Inference
  • 相关文献

参考文献8

  • 1Stephenson T A. An Introduction To Bayesian. Network Theory And Usage[ R]. Valais Switzerland: Idiap Research Imtitute,2000.
  • 2Horvitz E, Barry M. Display of Information for Time - critical Decision Making [ C ]// Montreal Canada: Proceeding of the llth Conference on Uncertainty in Artifical Intelligence, 1995: 296 - 305.
  • 3Pearl J. Probabilistic Reasoning in Intelligent System: Network of Plausible Inference[M]. Califormia:Morgan Kaufmann Pub- lisher' Inc, 1986:116 - 131.
  • 4Marco D Z, Mauro S. Bayesian networks for imputation[J]. Journal of the Royal Statistical Society,2004,167(2) :309- 322.
  • 5Pearl J F. Propagation and structuring in belief networks[J].Artificial Intelligence, 1986, 29(3) : 241 - 288.
  • 6Lauritzen S L, Spiegelhalter D J. Local computations with prob- abilities on graphical structures and their applications to expert systems[J]. Proceedings of the Royal Statistical Society, 1988 (2) : 154 - 227.
  • 7Dagum P, Karp R, Luby M. An optimal algorithm for Monte Carlo estimation[C]//Portland Oregon: Foundations of Com- puter Science, 1995.
  • 8Santos E J, Shimony S E. Exploiting ease based independence for approximating marginal pmbabilities[J ]. International Journal of Approximate Reasoning, 1996, 14(1) : 25 - 54.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部