期刊文献+

用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型 被引量:15

A Metadata-enhanced Variational Bayesian Matrix Factorization Model for Robust Collaborative Recommendation
下载PDF
导出
摘要 托攻击是协同过滤推荐系统面临的重大安全威胁.研究可抵御托攻击的鲁棒协同推荐技术已成为目前的重要课题.本文在引入用户嫌疑性评估策略的基础上,通过将用户嫌疑性及项类属等元信息与贝叶斯概率矩阵分解模型相融合,提出了用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型(Metadata-enhance dvariationa lBayesian matri xfactorization,MVBMF),并设计了相应的模型增量学习策略.实验表明,与现有推荐模型相比,这种模型具备更强的攻击耐受力,能够有效提高推荐系统的鲁棒性. Shilling attacks pose a significant threat to the security of collaborative filtering recommender systems. It has come to be an important task to develop the attack-resistant techniques for robust collaborative recommendation. Through evaluating the user suspiciousness, and further integrating Bayesian probabilistic matrix factorization model with the metadata including user suspiciousness as well as item types, this paper proposes the metadata-enhanced variational Bayesian matrix factorization (MVBMF) model for robust collaborative recommendation, and designs the corresponding incremental learning strategy. Experimental results show that comparing with the existed recommendation models, this model has stronger resistibility and can effectively improve the robustness of recommender systems.
作者 李聪 骆志刚
出处 《自动化学报》 EI CSCD 北大核心 2011年第9期1067-1076,共10页 Acta Automatica Sinica
关键词 协同过滤 托攻击 矩阵分解 变分推断 鲁棒线性回归 Collaborative filtering, shilling attacks, matrix factorization, variational inference, robust linear regression
  • 相关文献

参考文献26

  • 1Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extension. IEEE Transactions on Knowledge and Data Engineering, 2005, 1T(6): 734-749.
  • 2O'Mahony M P, Hurley N J, Kushmerick N, Silvestre G C M. Collaborative recommendation: a robustness analy- sis. ACM Transactions on Internet Technology, 2004, 4(4): 344-377.
  • 3O'Mahony M P, Hurley N J, Silvestre G C M. Detecting noise in recommender system databases. In: Proceedings of the llth International Conference on Intelligent User Inter- faces. Sydney, Australia: ACM, 2006. 109-115.
  • 4Lam S, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th Conference on World Wide Web. New York, USA: ACM, 2004. 393-402.
  • 5Su X, Khoshgoftaav T M. A survey of collaborative filtering techniques. Advances in Artil~cial Intelligence, 2009, 2009: 1-20.
  • 6Mobasher B, Burke R, Bhaumik R, Williams C. Toward trustworthy recommender systems: an analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology, 2007, 7(4): 1-40.
  • 7Mobasher B, Burke R, Bhaumik R, Sandvig J J. Attacks and remedies in collaborative recommendation. IEEE Intelligent Systems, 2007, 22(3): 56-63.
  • 8O'Mahony M P, Hurley N J, Silvestre G C M. Efficient and secure collaborative filtering through intelligent neighbor se- lection. In: Proceedings of the 16th European Conference on Artificial Intelligence. Valencia, Spain: IOS Press, 2004. 383-387.
  • 9Sandvig J J, Mobasher B, Burke R. Impact of relevance measures on the robustness and accuracy of collaborative fil- tering. In: Proceedings of the 8th International Conference on E-commerce and Web Technologies. Berlin, Germany: Springer, 2007. 99-108.
  • 10Sandvig J J, Mobasher B, Burke R. Robustness of collab- orative recommendation based on association rule mining. In: Proceedings of the ACM Conference on Recommender Systems. New York, USA: ACM, 2007. 105-112.

同被引文献81

  • 1余力,董斯维,郭斌.电子商务推荐攻击研究[J].计算机科学,2007,34(5):134-138. 被引量:11
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 Computer Supported Cooperative Work. Chapel Hill: ACM, 1994. 175-186.
  • 4Hill W C, Stead L, Rosenstein M, Furnas G W. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the 1995 SIGCHI Conference on Human Factors in Computing Systems. Denver: ACM, 1995. 194-201.
  • 5Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York, USA: ACM, 2004. 393-402.
  • 6O'Mahony M P, Hurley N J, Kushmerick N, Silvestre G C M. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology (TOIT), 2004, 4(4): 344-377.
  • 7Mobasher B, Burke R, Sandvig J J. Model-based collaborative filtering as a defense against profile injection attacks. In: Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference. Boston, Massachusetts, USA: AAAI, 2006.
  • 8Gunes I, Kaleli C, Bilge A, Polat H. Shilling attacks against recommender systems: a comprehensive survey. Artificial Intelligence Review, 2014, 42(4): 767-799.
  • 9Mobasher B, Burke R, Williams C, Bhaumik R. Analysis and detection of segment-focused attacks against collaborative recommendation. In: Proceedings of the 7th International Workshop on Knowledge Discovery on the Web. Chicago, IL: Springer Berlin Heidelberg, 2006. 96-118.
  • 10Burke R D, Mobasher B, Williams C, Bhaumik R. Classification features for attack detection in collaborative recommender systems. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA, USA: ACM, 2006. 542-547.

引证文献15

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部