期刊文献+

云存储系统中基于更新日志的元数据缓存同步策略 被引量:6

Synchronization Strategy for Metadata Cache in Cloud Storage System Based on Change-Log
下载PDF
导出
摘要 在云存储系统中使用客户端元数据缓存,不仅可以减轻元数据服务器的压力,避免元数据服务器成为系统瓶颈,提高系统的可扩展性,而且可以降低客户端元数据操作的响应延迟,极大地提高客户端IOPS性能。本文对云存储系统客户端元数据缓存同步机制进行研究,提出了基于更新日志的元数据缓存同步策略,利用该策略替代了MassCloud云存储系统原先的元数据缓存完全同步策略。测试结果表明,新的缓存同步策略给MassCloud云存储系统带来了20~140倍的性能提升。 Client-side metadata cache is used in cloud storage system. It can not only reduce the work load of metadata server, solve the bottleneck prohlem of metadata server, and improve the expandability of cloud-storage system, hut also reduce the response latency of client-side metadata request, improve client-side IOPS-performanee greatly. This paper does research on synchronization mechanism of metadata caches in cloud storage system, puts forward the synchronization strategy based on change-log. This strategy is used to replace the original full-synchronization strategy in the cloud storage system named MassCloud. The results of test show that this stragety brings about 20-140 times performance improvement to MassCloud storage system.
出处 《电信科学》 北大核心 2011年第9期32-36,共5页 Telecommunications Science
基金 国家"863"计划资助项目(No.2008AA01A309) 国家自然科学基金资助项目(No.60603029)
关键词 云存储 元数据缓存 同步策略 更新日志 cloud storage,metadata cache,synchronization strategy, change-log
  • 相关文献

参考文献7

  • 1Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung. The Google file system. In: Proceedings of the 19th ACM Symposium on operating systems principles, Bohon Landing, NY,2003.
  • 2Tom White. Hadoop:the definitive guide Sebastopol. CA: O' Reilly Media, 2009.
  • 3Gideon Juve, Ewa Deelman, Karan Vahi, et ol. Data sharing options for scientific workflows on amazon EC2. In: 2010 International Conference for High Performance Computing, Networking, Storage and Analysis(SC), New Orleans, LA, 2010.
  • 4Chappell D. Introducting windows azure,2009.
  • 5楚才.TFS简介.http://rdc.taobao.com/blog/cs.
  • 6叶伟等.互联网时代的软件革命:SaaS架构设计.北京:电子工业出版社.2010.
  • 7Klosterman A J, Ganger G. Cuckoo: layered clustering for NFS. Technical Report CMU-CS-02-183. Carnegie Mellon University, 2002.

同被引文献30

  • 1杨德志,黄华,张建刚,许鲁.大容量、高性能、高扩展能力的蓝鲸分布式文件系统[J].计算机研究与发展,2005,42(6):1028-1033. 被引量:28
  • 2Kung H T, Lin C K, Vlah D. CloudSense: continuous fine-grain cloud monitoring with compressive sensing[C]//Proceedings of the 3rd USENIX Workshop on Hot Topics in Cloud Computing. Portland, OR, USA, 2011:15-19.
  • 3Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Candes E J. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians. Madrid, Spain, 2006(3): 1433-1452.
  • 5Lei L, Wo T Y, Hu C M. CREST: towards fast speculation of straggler tasks in MapReduce[C]//Proceedings of the IEEE 8th International Conference on E-business Engineering. Beijing, China, 2011: 311-316.
  • 6Tom White. Hadoop: the definitive guide[M]. Sebastopol, CA, USA:ORelly Media Inc, 2011: 170-173.
  • 7Candes E J. The restricted isometry property and its implications for compressed sensing[J]. Computes Rendus Mathematique, 2008, 346(9/10): 589-592.
  • 8Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549-571.
  • 9Baraniuk R, Davenport M, Devore R, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 2008, 28(3): 253-263.
  • 10Davis G, Mallat S, Avellaneda M. Adaptive greedy approximations[J]. Constructive Approximation, 1997, 13(1): 57-98.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部