期刊文献+

基于准KLT域的线谱对参数压缩感知量化研究 被引量:2

Efficient Compressed Sensing Quantization of LSP Parameters Based on the Approximate KLT Domain
下载PDF
导出
摘要 用尽可能少的比特数实现线谱对(LSP)参数透明量化一直是语音编码领域的研究热点。该文基于压缩感知理论,研究了LSP参数在准KLT域的稀疏性,并设计了LSP参数先压缩感知再矢量量化的方案。编码端,利用压缩感知理论,在准KLT域将原始LSP参数投影到低维空间,得到低维测量值,而后采用分裂矢量量化算法对测量值进行量化;解码端,以量化后的测量值为已知条件,利用正交匹配追踪算法重构出原始LSP高维矢量,重构值作为最终量化值。实验结果表明,算法在适当的码本存储量和搜索复杂度下,达到透明量化效果所需的比特数最优时仅需5 bit/帧。 For low bit rate speech coding applications,it is very important to quantize the Line Spectrum Pair(LSP) parameters accurately using as few bits as possible without sacrificing the speech quality.In this paper,the sparsity of LSP parameters on the approximated Karhunen-Loeve Transform(KLT) domain is researched,and then an efficient LSP parameters quantization scheme is proposed based on the Compressed Sensing(CS).In the encoder,the LSP parameters extracted from consecutive speech frames are compressed by CS on the approximate KLT domain to produce a low dimensional measurement vector,the measurements are quantized using the split vector quantizer.In the decoder,according to the quantized measurements,the original LSP vector is reconstructed by the orthogonal matching pursuit method,the reconstructed LSP vector is the ultimate quantization value of the original LSP parameters.Experimental results show that the scheme can obtain transparent quality at 5 bit/frame with realistic codebook storage and search complexity.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第9期2062-2067,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61072042)资助课题
关键词 低速语音编码 线谱对 压缩感知 KLT域 Low bit rate speech coding Line Spectrum Pair(LSP) Compressed Sensing(CS) Karhunen-Loeve Transform(KLT) domain
  • 相关文献

参考文献16

  • 1Gwenael G, Francois C, Bertrand R, et al.. New NATO STANAG narrow band voice coder at 600 bits/s[C]. IEEE ICASSP, Toulouse, France, 2006: 689-692.
  • 2Paliwal K K and Atal B S. Efficient vector quantization of LPC parameters at 24 bits/frame[J]. IEEE Transactions on Speech and Audio Processing, 1993, 1(1): 3-14.
  • 3Leblanc W P, Bhattacharya B, Mahmoud S A, et al.. Efficient search and design procedures for robust multi-stage VQ of LPC parameters for 4 kb/s speech coding[J]. IEEE Transactions on Speech and Audio Processing, 1993, 1(4): 373-385.
  • 4Zou X and Zhang X W. Efficient coding of LSF parameters using multi-mode predictive multistage matrix quantization [C]. IEEE International Conference on Signal Processing, Beijing, China, 2008: 542-545.
  • 5Subasingha S, Murthi M N, and Andersen S V. On GMM Kalman predictive coding of LSFS for packet loss[C]. IEEE ICASSP, Taibei, China, 2009: 4105-4108.
  • 6Ozaydin S and Baykal B. Matrix quantization and mixed excitation based linear predictive speech coding at very low bit rates[J]. Speech Communication, 2003, 41(2-3): 381-392.
  • 7Zou X, Zhang X W, and Zhang Y F. A 300 bps speech coding algorithm based on multi-mode matrix quantization[C]. IEEE International Conference on Wireless Communietions and Signal Processing, Nanjing, China, 2009: 1-4.
  • 8Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 9Zymnis A, Boyd S, and Cand~s E. Compressed sensing with quantized measurements[J]. IEEE Signal Processing Letters, 2010, 17(2): 149-152.
  • 10Baraniuk R G. Compressed sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.

二级参考文献36

  • 1方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 2Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candes E, Romberg J, and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 4Candes E. Compressive sampling. Int. Congress of Mathematics, Madrid, Spain, 2006, 3: 1433-1452.
  • 5Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-124.
  • 6Brandenburg K. MP3 and AAC explained. AES 17th international conference on High-Quaiity Audio coding, Erlangen, Germany, Sept. 1999: 1-12.
  • 7Pennebaker W and Mitchell J. JPEG: Still image data compression standard. Van Nostrand Reinhold, 1993.
  • 8Candes E and Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3):969-985.
  • 9Candes E and Tao T. Near-optimal signal recovery from random projections and universal encoding strategies. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
  • 10Candes E and Tao T. Decoding by linear programming. IEEE Transactions Information Theory, 2005, 51(12): 4203-4215.

共引文献76

同被引文献21

  • 1Donoho D. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 3Donoho D and Tsaig Y. Extensions of compressed sensing. Signal Processing, 2006, 86(3): 533-548.
  • 4Griffin A and Tsakalides P. Compressed sensing of audio signals using multiple sensors. Proceedings 16th European Signal Processing Conference (EUSIPCO'08), Lausanne, Switzerland, August 25-29, 2008.
  • 5Giacobello D, Christensen M G, Murthi M N, et al.. Retrieving sparse patterns using a compressed sensing framework: applications to speech coding based on sparse linear prediction. IEEE Signal Processing Letters, 2010, 17(1) 103-106.
  • 6Sreenivas T V and Kleijn W B. Compressive sensing for sparsely excited speech signals. Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, April 19-24, 2009: 4125-4128.
  • 7Christensen M, Ostergaard J, and Jensen S H. On compressed sensing and its application to speech and audio signals. Proceedings of the 43rd Asilomar Conference on Signals, Systems and Computers (Asilomar'09), Monterey, California, Nov. 1-4, 2009: 356-360.
  • 8Xu T T, Yang Z, and Shao X. Novel speech secure communication system based on information hiding and compressed sensing. 2009 Fourth International Conference on Systems and Networks Communications (ICSNC 2009), Porto, Portugal, 2009: 201-206.
  • 9Candes E and Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 10Candes E, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部