期刊文献+

基于感知矩阵统计相关系数最小化的压缩感知雷达波形优化设计 被引量:6

Waveform Design for Compressive Sensing Radar Based on Minimizing the Statistical Coherence of the Sensing Matrix
下载PDF
导出
摘要 为了改善压缩感知雷达(Compressive Sensing Radar,CSR)目标参数提取的性能,该文提出一种最小化感知矩阵统计相关系数的CSR波形优化设计方法。文中首先建立了通用的CSR系统模型,推导了最小化感知矩阵统计相关系数的波形优化目标函数,其次以多相编码信号作为优化码型并采用遗传算法对目标函数进行优化求解。优化设计的波形使得感知矩阵子矩阵近似正交程度达到最优,与传统波形相比,能够有效降低目标参数估计误差,提高可检测目标个数的上限,改善了CSR目标参数提取的准确性和鲁棒性。计算机仿真验证了该方法的有效性。 To enhance the performance of Compressive Sensing Radar(CSR) target information extraction ability,a CSR optimal waveform design method based on minimizing the statistical coherence of the sensing matrix is proposed.First,a universal CSR model is established and waveform optimization object function minimizing the coherence of the sensing matrix is derived.Then,the Genetic Algorithm(GA) is employed to solve this problem with polyphase coded signal as an example code.The optimized waveform makes the sub-sensing matrix orthogonality degree approximately optimal.Comparing with traditional waveforms,this waveform reduces effectively the target information estimation error,increases the permissible upper bound of target detection number,and enhances the accuracy and robustness of CSR target information extraction.Computer simulation shows the effectiveness of the method.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第9期2097-2102,共6页 Journal of Electronics & Information Technology
基金 南京理工大学自主科研专项计划(2010ZYTS028 2010ZDJH05) 南京理工大学科研启动基金资助课题
关键词 压缩感知雷达 波形优化 感知矩阵相关系数 遗传算法 Compressive Sensing Radar(CSR) Waveform optimization Coherence of the sensing matrix Genetic Algorithm(GA)
  • 相关文献

参考文献13

  • 1Baraniuk R G, Candes E J, Elad M, et al.. Applications of sparse representation and compressive sensing [J]. Proceedings of the IEEE, 2010, 98(6): 906-909.
  • 2Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Potter L C, Ertin E, Parker J T, et al.. Sparsity and compressed sensing in radar imaging [J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
  • 5Baraniuk R and Steeghs P. Compressive radar imaging [C] 2007 IEEE International Radar Conference, Boston Massachusetts, USA, April 17-20, 2007: 128-133.
  • 6Herman M A and Strohmer T. High-resolution radar via compressed sensing [J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
  • 7Shi G M, Chert X Y, Qi F, et al.. UWB echo signal detection with ultra-low rate sampling based on compressed sensing [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55(4): 379-383.
  • 8Subotic N S, Thelen B, Cooper K, et al.. Distributed radar waveform design based on compressive sensing considerations [C]. 2008 IEEE International Radar Conference, Rome, Italy, May 26-30,2008: 1-6.
  • 9Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise [J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
  • 10Eftekhari A, Babaie-Zadeh M, Jutten C, et al.. Robust-SL0 for stable sparse representation in noisy settings [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, April 19-24, 2009: 3433-3436.

同被引文献71

  • 1焦现军,张磊,项海格.单载波频域均衡系统中的PN信道估计算法[J].北京大学学报(自然科学版),2007,43(1):103-108. 被引量:10
  • 2PANCALDI F, VITETTA G, KALBASI R, et al. Single-carrier frequency domain equalization [J]. IEEE Signal Processing Magazine, 2008, 25(5): 37-56.
  • 3FALCONER D, ARIYAVISITAKUL S L, BENY- AMIN-SEEYAR A, et al. Frequency domain equaliza- tion for single-carrier broadband wireless systems [J]. IEEE Communications Magazine, 2002, 40 (4) : 58- 66.
  • 4COON J, SANDELL M, BEACH M, et al. Channel and noise variance estimation and tracking algorithms for unique-word based single-carrier systems [J]. IEEE Transactions on Wireless Communications, 2006, 5(6) :1488-1496.
  • 5ZHENG Yahong, XIAO Chengshan. Channel estima- tion for frequency-domain equalization of single-carrier broadband wireless communications [J]. IEEE Trans- actions on Vehicular Technology, 2009, 58 (2):815- 823.
  • 6BERGER C R, ZHOU Shengli, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication., from subspace methods to compressed sensing [J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1708-1721.
  • 7TAUBOCK G, HLAWATSCH F, EIWEN D, et al. Compressive estimation of doubly selective channels in multicarrier systems: leakage effects and sparsity- enhancing processing [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2) : 255-271.
  • 8HAUPT J, BAJWA W U, RAZ G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation [J].IEEE Transactions on Information Theory,2010, 56(11) : 5862-5875.
  • 9PAREDES J L, ARCE G R, WANG Zhongmin. U1- tra-widehand compressed sensing: channel estimation [J]. IEEE Journal of Selected Topics in Signal Pro- cessing, 2007, 1(3) :383-395.
  • 10DONOHO D L, HUO Xiaoming. Uncertainty princi- ples and ideal atomic decomposition [J].IEEE Trans- actions on Information Theory, 2001, 47(7): 2845- 2862.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部