期刊文献+

基于周期B样条曲面的环状N边洞G^n连续性过渡 被引量:2

G^n filling orbicular N-sided holes using periodic B-spline surfaces
原文传递
导出
摘要 环状N边洞经常产生于零件端部的大半径过渡或光滑填充操作中,现有的基于四边形分割或约束求解的方法对此难以得到法向或更高阶连续的过渡曲面.本文首先对环状N边洞的边界进行保持Gn连续的重新参数化,以确保相邻边界跨越切矢曲线在连接处的相容性.然后根据极点处的Gn连续充分条件和通过参数连续曲面延伸,分别得到周期B样条曲面的内外两侧控制顶点.该方法仅生成单个填充曲面,控制顶点少,可直接通过插节点转化为标准B样条曲面,次数仅相对原边界曲线升n次.其构造方法简单快速,不涉及大方程求解和迭代,在几何相容条件下曲面连续性可达到Gn.本文提供了过渡实例来说明其有效性和实用性. The orbicular N-sided hole filling problem is usually introduced by filleting an end-point of a part with large radius.The existing methods based on quadrilateral partition or constrained-optimization can rarely generate high-order continuous blending surfaces under these circumstances.This paper first reparameterizes the boundary of the specified orbicular N-sided hole to ensure the compatibility of neighboring cross-boundary derivatives on the connecting points,preserving their Gn continuity.Then we compute the control points of the periodic B-spline surface using the suffcient Gn continuity condition on the pole and the algorithm of extending parametric surfaces.This method generates single blending surface,which can be converted into standard Bspline surface by adding knots without introducing errors.It only elevates the degree of the boundary by n.The construction method is simple and effcient,without iteration nor large-scale matrix solving.It achieves Gn continuity under compatible conditions.The blending examples underline its feasibility and practicability.
出处 《中国科学:信息科学》 CSCD 2011年第9期1112-1125,共14页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61035002,61063029) 中法NSFC-ANR共同资助合作研究项目(批准号:60911130368) 清华大学自主科研计划(批准号:2009THZ0)资助
关键词 计算机辅助设计 周期B样条曲面 极坐标 N边洞填充 G^n连续 CAD; periodic B-spline surface; polar coordinates; N-sided hole filling; Gn continuity;
  • 相关文献

参考文献25

  • 1Kan-Le Shi,Jun-Hai Yong,Jia-Guang Sun,Jean-Claude Paul,He-Jin Gu.Filling n-sided regions with G 1 triangular Coons B-spline patches[J]. The Visual Computer . 2010 (6-8)
  • 2Guiqing Li,Hua Li.Blending parametric patches with subdivision surfaces[J]. Journal of Computer Science and Technology . 2002 (4)
  • 3Les A. Piegl,Wayne Tiller.Filling n-sided regions with NURBS patches[J]. The Visual Computer . 1999 (2)
  • 4Gregory J A,Lau V K H,Zhou J W.Smooth parametric surfaces and Nsided patches. Computation of Curvesand Surfaces . 1989
  • 5Plowman D,Charrot P.A practical implementation of vertex blend surfaces using an n-sided patch. Proceedingsof the6th IMA Conference on the Mathematics of Surfaces . 1994
  • 6Sabin M A.Non-rectangular surface patches suitable for inclusion in a Bspline surface. Proceedings of Eurograph-ics . 1983
  • 7Nasri A,Sabin M,Yasseen Z.Filling N-sided regions by quad meshes for subdivision surfaces. Computer Graphics Forum . 2009
  • 8Levin A.Filling n-sided holes using combined subdivision schemes. Curve and Surface Design . 2009
  • 9Karˇciauskas K,Myles A,Peters J.A C2polar jet subdivision. Proceedings of the Fourth Eurographics Symposiumon Geometry Processing . 2006
  • 10Varady T.Survey and new results in n-sided patch generation. Proceedings on Mathematics of surfaces II . 1987

同被引文献12

  • 1高占恒,梁学章,高福顺,马婷.B样条曲面间G^1连续条件及局部格式构造问题[J].计算机辅助设计与图形学学报,2007,19(7):866-870. 被引量:2
  • 2Farin G.Curves and surfaces for computer aided geometric design:A practical guide[M]4th ed.New York:Academic Press,1997:64-306.
  • 3Farouki RT,Szafran N,Biard L.Construction and smoothing of triangular coons patches with geodesic boundary curves[J].Computer Aided Geometric Desgin,2010,27 (4):301-312.
  • 4Kouichi Konno,Hiroaki Chiykura.An approach of designing and controlling free-form surfaces by using NURBS boundary Gregory patches[J].Computer Aided Geometric Design,1996,13 (9):825-849.
  • 5ZHANG Lei,WANG Guo-jin.Computation of lower derivatives of rational triangular Bezier surfaces and their bounds estimation[J].Journal of Zhejiang University Science,2005,6 (1):108-115.
  • 6Barnhill R E,Gregory J A.Compatible Smooth Interpolation in Triangles[J].Journal of Approximation Theory,1975,15 (3):214-225.
  • 7Zhang Zhiyi,Wang Zhenhua,He Dongjian.A New Bi cubic Triangular Gregory Patch[C]//Proceedings of the 2008 International Conference on Computer Science and Software Engineering.WuHan:IEEE Computer Society Press,2008:1003-1007.
  • 8Hans Hagen,Gregory Nielson,Yasuo Nakajima.Surface design using triangular patches[J].Computer Aided Geometric Design,1996,13 (9):895-904.
  • 9Long Yang,Dongjia He,ZhiyiZhang,Construction of G1 smooth surface employing triangular Gregory Patches[C]//Proceedings of the 5th International Conference on Image and Graphics.Xi'an:IEEE Computer Society Press,2009:577-580.
  • 10郝茹,刘润涛.双四次有理Bezier曲面G^1光滑拼接算法[J].计算机工程与应用,2010,46(4):174-175. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部