期刊文献+

高阶曲线矢量有限元方法实现及关键问题 被引量:1

Implementation for higher order curvilinear vector FEM
下载PDF
导出
摘要 针对传统的直线型高阶矢量基函数对曲边界模拟不好的缺点,研究了基于四面体叠层矢量元的高阶曲线建模技术。系统而显式地分析了三维高阶曲线矢量元的实现过程,探讨了实现过程中的一些关键问题。通过分析一个球形谐振腔,系统比较了各种直线或曲线形式的高、低阶矢量元的性能(如计算精度、条件数等),并将其用于分析不均匀腔体的谐振问题。计算结果表明:采用曲线元对曲线模型进行建模,在不影响计算效率的情况下,可极大地提高计算精度。 To overcome the shortcoming of typical rectilinear higher order vector elements which cannot exactly model curved boundaries, an efficient higher order geometrical mapping technology based on tetrahedral hierarchical vector elements is studied. The implementation process for 3D higher order curvilinear vector elements is researched, and some key issues are discussed. The results of a numerical experiment that investigates the resonant problem of a spherical cavity, compare the performance of different rectilinear and curvilinear vector elements systematically (such as calculated accuracy, condition numbers), which are also applied to the eigen-selution of inhomogeneously-filled cavities. Numerical results demonstrate that for the same computational efficiency, curvilinear elements can provide more accurate results than rectilinear elements when higher order elements are used to such problems.
出处 《电波科学学报》 EI CSCD 北大核心 2011年第4期722-730,共9页 Chinese Journal of Radio Science
关键词 有限元方法 高阶 四面体矢量元 曲线单元 数值实现 finite element method higher order tetrahedral vector elements curvilinear elements numerical implementation
  • 相关文献

参考文献23

  • 1尹文禄,邓聪,柴舜连,毛钧杰,汪德宁.基于Nedelec条件的高阶矢量元构造与实现[J].微波学报,2009,25(3):7-12. 被引量:5
  • 2NOTAROS B M. Higher order frequency-domain computational electromagnetics [J]. IEEE Transac- tions on Antennas and Propagation, 2008, 56 (8) : 2251-2276.
  • 3尹文禄,叶良丰,邓聪,柴舜连,毛钧杰.基于高阶四面体矢量元的大规模本征值求解[J].微波学报,2010,26(1):12-18. 被引量:3
  • 4JIN J M. The Finite Element Method in Electromagnet- ics [M]. 2nd ed. New York: John Wiley and Sons, 2002.
  • 5NEDELEC J C. Mixed finite elements in R3 [J]. Numerisehe Mathematik. 1980, 35 (9), 315-341.
  • 6GRAGL1A R D, WILTON D R, PETERSON A F. Higher order interpolatory vector bases for computa- tional electromagnetics [J]. IEEE Transactions on Antennas and Propagation, 1997, 45 (3): 329-342.
  • 7WEBB J P. Hierarchal vector basis functions of arbi- trary order for triangular and tetrahedral finite ele- ments [J ]. IEEE Transactions on Antennas and Propagation, 1999, 47 (8): 1244-1253.
  • 8尹文禄,邓聪,杨虎,柴舜连,毛钧杰.高阶四面体矢量元的实现与性能比较[J].微波学报,2010,26(3):15-20. 被引量:2
  • 9YIN W L, DONG J, CHEN L, et al. Systematic construction and performance comparison for higher order hierarchical tetrahedral vector elements [C] //International Conference on Wireless Commu- nications and Signal Processing. Suzhou China, 2010: 1-4.
  • 10CROWLEY C W, SILVESTER P P, HURWITZ H. Covariant projection elements for 3D vector field problems [J]. IEEE Transactions on Magnetics, 1988, 24 (1): 397-400.

二级参考文献80

  • 1NEDELEC J C. Mixed finite elements in R3[J]. Numerisehe Mathematik, 1980, 35 (9) : 315-341.
  • 2NOTAROS B M. Higher order frequency-domain computational electromagnetics[J]. IEEE Transactions on Antennas and Propagation,2008, 56(8): 2251-2276.
  • 3MONK P. A finite element method for approximating the time-harmonic Maxwell equation[J]. Numerisehe Mathematik,1992, 63(1): 243-261.
  • 4GRAGLIA R D, WILTON D R, PETERSON A F. Higher order interpolatory vector bases for computational eleetromagnetics[J]. IEEE Transactions on Antennas and Propagation,1997, 45(3) : 329-342.
  • 5LEE J F, SUN D K, CENDES Z J. Tangential vector finite elements for electromagnetic field computation [J]. IEEE Transactions on Magnetics, 1991, 27(5) : 4032-4035.
  • 6PETERSON A F. Vector finite element formulation for scattering from two-dimensional heterGgeneous bodies[J]. IEEE Transactions on Antennas and Propagation,1994, 43(3): 357-365.
  • 7AHAGON A, KASHIMOTO T. Three-dimensional electromagnetic wave analysis using high order edge elements [J]. IEEE Transactions on Magnetics,1995, 31(3) : 1753- 1756.
  • 8YIOULTSIS T V, TSIBOUKIS T D. Development and implementation of second and third order vector finite elements in various 3-D electromagnetic field problems[J]. IEEE Transactions on Magnetics, 1997, 33(2): 1812-1815.
  • 9REN Z, IDA N. Solving 3D eddy current problems using second order nodal and edge elements[J]. IEEE Transactions on Magnetics,2000, 36(4) : 746-750.
  • 10DAVIDSON D B. Implementation issues for three-dimensional vector FEM programs[J]. IEEE Antennas and Propagation Magazine,2000, 42(6) : 100-107.

共引文献5

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部